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An example
parse  makeBadkup prettyPrint

\ SN/

readContents  writeContents

) >

openHle closeFile



An example with aspects
Possible aspects:
trace calls to closeF'ile originating from makeBackup
check for legal arguments to writeContents

ensure the callee has permission to execute openkFile

Will show how to define such aspects in a higher-order
language
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Why AOP in a higher-order language?

Many languages have higher-order first-class functions

* Scheme, ML, Haskell
* Perl, Python, Ruby

What is interaction between FP and AOP?

* simplify specification of aspects?
* define more general aspects?
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Challenges

How to specify aspects

* a function may have zero, one, or multiple names
* first-order or first-class aspects?

Scoping issues

* can define aspects outside top level
* when is an aspect in force?

Will present extension of a higher-order language that
supports pointcuts and advice



How to specify?
Decided to make pointcuts and advice first-class
Consistent with design of functional languages

Define pcd as predicate over list of join points

Define advice as join point (procedure) transformer
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How to specify pcd’s?

Calls to closeF'ile originating from makeBackup
In AspectJ:

call(void closeFile())
¢9€5 cflow(withincode(void makeBackup()))

In our language:

(A (7p1)
(and (eq? close-file (first jpl))
(member make-backup (rest jpl))))
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How to specify pcd’s?
(call f) = (A (ipl) (eq? | (first jpl)))

(within f) = (X (ypl) (and (not (empty? (rest jpl)))
(eq? [ (second jpl))))
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How to specify pcd’s?
(call ) = (A (jpl) (eq? [ (first jpl)))
(within f) = (X (ypl) (and (not (empty? (rest jpl)))
(eq? [ (second jpl))))
(6965 pcdl ped?2) = (X (Jpl) (and (pedi jpl)
(pcd2 jpl))))
(cflow ped) = (A (jpl)
(cond
[(empty? jpl) false]
lelse (or (pcd jpl)
((cflow ped) (rest jpl)))]))
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How to specify pcd’s?
Rewrite examples as:

Calls to closeFile
(call close-file)

Calls to closeFile originating from makeBackup
(6969 (call close-file) (cflow (within make-backup)))

Showed how to define pcd's

Next: how to define advice



How to specify advice?

Procedure transformers:

(define trace-advice
(A (proc)
(A (arg)
(printf "calling open-file")
(proceed proc arg))))
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How to specify advice?

Procedure transformers:

(define trace-advice
(A (proc)
(A (arg)
(printf "calling open-file")
(proceed proc arg))))

All advice is around advice

So far, no more or less than Aspect]



The around expression

To install a pcd and advice, introduce new type of
expression:

(around Pcd Advice Body)

11



The around expression

To install a pcd and advice, introduce new type of
expression:

(around Pcd Advice Body)

For example:

(let ([input (parse "filel")])
(around (call open-file) trace-advice
(pretty-print input "file2")))
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Review of scope in Java
interface StringMaker {
String process(String s); }
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Review of scope in Java
interface StringMaker {
String process(String s); }

final String familyName = "tucker";

StringMaker makeFamilyMember =
new StringMaker() {
String process(String givenName) {
return givenName + " " + familyName ; }};

makeFamilyMember.process("dave")

= "dave tucker"

12



Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");
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Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");

Static scoping (Java) = "dave tucker"

familyName's value from site of function definition

Dynamic scoping = "dave krishnamurthi"

familyName's value from site of function application

13



What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply
to everything in that scope
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What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply
to everything in that scope

In a higher-order language, can define aspects more
precise scopes

around aspects are statically scoped

apply to join points in text of body

14



Example #1

(around (call open-file) trace-advice
(open-file "boston"))
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Example #1

(around (call open-file) trace-advice
(open-file "boston"))

This prints a trace message
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Example #2

((around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")
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Example #2

((around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")

Also prints a trace message
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Example #3

(let ([apply-to-boston (A (f) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))
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Example #3

(let ([apply-to-boston (A (f) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))

This does not print a trace message

17



Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (A (f) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))

18



Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (A (f) (f "boston"))])
(fluid-around (call open-file) trace-advice

(apply-to-boston open-file)))

19



Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (A (f) (f "boston"))])
(fluid-around (call open-file) trace-advice

(apply-to-boston open-file)))
This does print a trace message

fluid-around aspects are dynamically scoped

apply to join points during evaluation of body

19



Example #2 revisited

((around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")
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Example #2 revisited

((fluid-around (call open-file) trace-aduvice

(A (f) (open-file f)))
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Example #2 revisited

((fluid-around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")

Does not print a message

21



Using dynamic aspects

Trace calls to close-file that originate from make-backup
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Using dynamic aspects

Trace calls to close-file that originate from make-backup

(define (backup-system)
(for-each make-backup
(lzst "boston" "providence" "woonsocket")))
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Using dynamic aspects

Trace calls to close-file that originate from make-backup

(define (backup-system)
(for-each make-backup
(lzst "boston" "providence" "woonsocket")))

(fluid-around (965 (call close-file)
(cflow (within make-backup)))
trace-aduvice
(backup-system))

22



Using static aspects

Ensure the callee has permission to execute openFile

Use stack inspection to check privileges:

a trusted user must ask for privilege

if privilege is on stack, with no intervening untrusted
code, then go ahead

Concisely: “only trusted frames UNTIL privilege granted”

23



Using static aspects

Easy:
(define protected-open-file
(around (€€ (call open-file)
(! (until trusted? privileged?)))
report-privilege-error
(A (f)
(open-file £))))

Can export this function

24
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Higher-order pointcuts

Since pointcuts are first-class, we could define until:

(define (until pcdl pcd2)
(A (spl)
(cond

[(empty? jpl) false]

lelse (or (pcd2 jpl)

(and (pcd! jpl)
((until pcdl ped2) (rest jpl))))])))

Can you write this using cflow?



Implementation background

Hygienic macros (syntax-case)
PLT Scheme module system

Continuation marks:

*x (w-c-m Tag Value Body) adds a mark
x (c-c-m Tag) retrieves marks

26



Continuation marks example

For example:

(define (fact n)
(w-c-m 'fact-arg n
(if (zero? n)
(begin (display (c-c-m 'fact-arg)) 1)
(x n (fact (subl n))))))

27






Continuation marks example

(fact 2)

= (w-c-m 'fact-arg 2
(x 2
(w-c-m 'fact-arg 1
(% 1
(w-c-m 'fact-arg O
(begin (display (c-c-m 'fact-arg)) 1))))))
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Continuation marks example

(fact 2)

= (w-c-m 'fact-arg 2
(x 2
(w-c-m 'fact-arg 1
(% 1
(w-c-m 'fact-arg O
(begin (display (c-c-m 'fact-arg)) 1))))))

displays (0 1 2)
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Implementation of dynamic aspects

Join points

* record with (w-c-m 'joinpoint fun-val . . .)
* retrieve current list with (c-c-m 'joinpoint)

29
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Implementation of dynamic aspects

Join points

* record with (w-c-m 'joinpoint fun-val . . .)

* retrieve current list with (c-c-m 'joinpoint)
Dynamic aspects

x fluid-around does (w-c-m 'dynamic aspect . . .)

* application retrieves aspects with (c-c-m 'dynamic)

Function application has list of joinpoints and dynamic
advice, can invoke aspects (similar to semantics)

29
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Implementation of static aspects

Transform all lambdas to remember active aspects

When applied, functions automatically reinstate static
aspects

Make sure to use correct aspects during function
application



Limitations

Aspect] can match data on any join point in context:

pointcut factArg(int n) :
call(int fact(int)) €969 args(n);
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Limitations

Aspect] can match data on any join point in context:

pointcut factArg(int n) :
call(int fact(int)) €969 args(n);

before(int z, int y) :
factArg(x) €969 cflowbelow(factArg(y))

1

System.out.printin(z + " " + y);

}

31






Calling fact:
fact(4);

prints:
34
23
12
01

Limitations
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Limitations
Calling fact:

fact(4);

prints:
34
23
12
01

We only allow access to current function and arguments
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Wand et al: A Semantics for Advice and Dynamic Join
Points in Aspect-Oriented Programming (FOAL 2002)

Clements et al: Modeling an Algebraic Stepper (ESOP
2001)

Orleans: Incremental Programming With Extensible
Decisions (AOSD 2002)
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Contributions

1. Defined semantics for aspects in a higher-order language
2. Explored consequences of these semantics

3. Developed lightweight implementation using continuation
marks
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