
Pointcuts and Advice for
Higher-Order Languages

David B. Tucker and Shriram Krishnamurthi

2003 March 20



1

An example

parse makeBackup prettyPrint

readContents writeContents

closeFileopenFile



2

An example with aspects

Possible aspects:

• trace calls to closeFile originating from makeBackup

• check for legal arguments to writeContents

• ensure the callee has permission to execute openFile

Will show how to define such aspects in a higher-order

language



3

Why AOP in a higher-order language?

• Many languages have higher-order first-class functions

? Scheme, ML, Haskell



3

Why AOP in a higher-order language?

• Many languages have higher-order first-class functions

? Scheme, ML, Haskell

? Perl, Python, Ruby



3

Why AOP in a higher-order language?

• Many languages have higher-order first-class functions

? Scheme, ML, Haskell

? Perl, Python, Ruby

• What is interaction between FP and AOP?

? simplify specification of aspects?

? define more general aspects?



4

Challenges

• How to specify aspects

? a function may have zero, one, or multiple names

? first-order or first-class aspects?



4

Challenges

• How to specify aspects

? a function may have zero, one, or multiple names

? first-order or first-class aspects?

• Scoping issues

? can define aspects outside top level

? when is an aspect in force?



4

Challenges

• How to specify aspects

? a function may have zero, one, or multiple names

? first-order or first-class aspects?

• Scoping issues

? can define aspects outside top level

? when is an aspect in force?

Will present extension of a higher-order language that

supports pointcuts and advice



5

How to specify?

Decided to make pointcuts and advice first-class

• Consistent with design of functional languages

• Define pcd as predicate over list of join points

• Define advice as join point (procedure) transformer



6

How to specify pcd’s?

Calls to closeFile

In AspectJ:

call(void closeFile())



6

How to specify pcd’s?

Calls to closeFile

In AspectJ:

call(void closeFile())

In our language:

(λ (jpl)
(eq? close-file (first jpl)))



7

How to specify pcd’s?

Calls to closeFile originating from makeBackup
In AspectJ:

call(void closeFile())

&& cflow(withincode(void makeBackup()))



7

How to specify pcd’s?

Calls to closeFile originating from makeBackup
In AspectJ:

call(void closeFile())

&& cflow(withincode(void makeBackup()))

In our language:

(λ (jpl)
(and (eq? close-file (first jpl))

(member make-backup (rest jpl))))



8

How to specify pcd’s?

(call f ) ≡ (λ (jpl) (eq? f (first jpl)))



8

How to specify pcd’s?

(call f ) ≡ (λ (jpl) (eq? f (first jpl)))

(within f ) ≡ (λ (jpl) (and (not (empty? (rest jpl)))
(eq? f (second jpl))))



8

How to specify pcd’s?

(call f ) ≡ (λ (jpl) (eq? f (first jpl)))

(within f ) ≡ (λ (jpl) (and (not (empty? (rest jpl)))
(eq? f (second jpl))))

(&& pcd1 pcd2 ) ≡ (λ (jpl) (and (pcd1 jpl)
(pcd2 jpl))))



8

How to specify pcd’s?

(call f ) ≡ (λ (jpl) (eq? f (first jpl)))

(within f ) ≡ (λ (jpl) (and (not (empty? (rest jpl)))
(eq? f (second jpl))))

(&& pcd1 pcd2 ) ≡ (λ (jpl) (and (pcd1 jpl)
(pcd2 jpl))))

(cflow pcd) ≡ (λ (jpl)
(cond

[(empty? jpl) false]

[else (or (pcd jpl)
((cflow pcd) (rest jpl)))]))



9

How to specify pcd’s?

Rewrite examples as:

Calls to closeFile
(call close-file)



9

How to specify pcd’s?

Rewrite examples as:

Calls to closeFile
(call close-file)

Calls to closeFile originating from makeBackup
(&& (call close-file) (cflow (within make-backup)))



9

How to specify pcd’s?

Rewrite examples as:

Calls to closeFile
(call close-file)

Calls to closeFile originating from makeBackup
(&& (call close-file) (cflow (within make-backup)))

Showed how to define pcd’s

Next: how to define advice



10

How to specify advice?

Procedure transformers:

(define trace-advice
(λ (proc)

(λ (arg)

(printf "calling open-file")
(proceed proc arg))))



10

How to specify advice?

Procedure transformers:

(define trace-advice
(λ (proc)

(λ (arg)

(printf "calling open-file")
(proceed proc arg))))

All advice is around advice



10

How to specify advice?

Procedure transformers:

(define trace-advice
(λ (proc)

(λ (arg)

(printf "calling open-file")
(proceed proc arg))))

All advice is around advice

So far, no more or less than AspectJ



11

The around expression

To install a pcd and advice, introduce new type of

expression:

(around Pcd Advice Body)



11

The around expression

To install a pcd and advice, introduce new type of

expression:

(around Pcd Advice Body)

For example:

(let ([input (parse "file1")])
(around (call open-file) trace-advice

(pretty-print input "file2")))



12

Review of scope in Java
interface StringMaker {

String process(String s) ; }



12

Review of scope in Java
interface StringMaker {

String process(String s) ; }

final String familyName = "tucker";

StringMaker makeFamilyMember =
new StringMaker() {

String process(String givenName) {
return givenName + " " + familyName ; }};



12

Review of scope in Java
interface StringMaker {

String process(String s) ; }

final String familyName = "tucker";

StringMaker makeFamilyMember =
new StringMaker() {

String process(String givenName) {
return givenName + " " + familyName ; }};

makeFamilyMember.process("dave")



12

Review of scope in Java
interface StringMaker {

String process(String s) ; }

final String familyName = "tucker";

StringMaker makeFamilyMember =
new StringMaker() {

String process(String givenName) {
return givenName + " " + familyName ; }};

makeFamilyMember.process("dave")

⇒ "dave tucker"



13

Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");



13

Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");

Static scoping (Java) ⇒ "dave tucker"

• familyName’s value from site of function definition



13

Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");

Static scoping (Java) ⇒ "dave tucker"

• familyName’s value from site of function definition

Dynamic scoping ⇒ "dave krishnamurthi"

• familyName’s value from site of function application



14

What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply

to everything in that scope



14

What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply

to everything in that scope

In a higher-order language, can define aspects more

precise scopes



14

What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply

to everything in that scope

In a higher-order language, can define aspects more

precise scopes

around aspects are statically scoped

• apply to join points in text of body



15

Example #1

(around (call open-file) trace-advice
(open-file "boston"))



15

Example #1

(around (call open-file) trace-advice
(open-file "boston"))

This prints a trace message



16

Example #2

((around (call open-file) trace-advice
(λ (f ) (open-file f )))

"boston")



16

Example #2

((around (call open-file) trace-advice
(λ (f ) (open-file f )))

"boston")

Also prints a trace message



17

Example #3

(let ([apply-to-boston (λ (f ) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))



17

Example #3

(let ([apply-to-boston (λ (f ) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))

This does not print a trace message



18

Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (λ (f ) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))



19

Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (λ (f ) (f "boston"))])
(fluid-around (call open-file) trace-advice

(apply-to-boston open-file)))



19

Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (λ (f ) (f "boston"))])
(fluid-around (call open-file) trace-advice

(apply-to-boston open-file)))

This does print a trace message

fluid-around aspects are dynamically scoped

• apply to join points during evaluation of body



20

Example #2 revisited

((around (call open-file) trace-advice
(λ (f ) (open-file f )))

"boston")



21

Example #2 revisited

((fluid-around (call open-file) trace-advice
(λ (f ) (open-file f )))

"boston")



21

Example #2 revisited

((fluid-around (call open-file) trace-advice
(λ (f ) (open-file f )))

"boston")

Does not print a message



22

Using dynamic aspects

Trace calls to close-file that originate from make-backup



22

Using dynamic aspects

Trace calls to close-file that originate from make-backup

(define (backup-system)

(for-each make-backup
(list "boston" "providence" "woonsocket")))



22

Using dynamic aspects

Trace calls to close-file that originate from make-backup

(define (backup-system)

(for-each make-backup
(list "boston" "providence" "woonsocket")))

(fluid-around (&& (call close-file)

(cflow (within make-backup)))

trace-advice
(backup-system))



23

Using static aspects

Ensure the callee has permission to execute openFile

Use stack inspection to check privileges:

• a trusted user must ask for privilege

• if privilege is on stack, with no intervening untrusted

code, then go ahead

Concisely: “only trusted frames UNTIL privilege granted”



24

Using static aspects

Easy:

(define protected-open-file
(around (&& (call open-file)

(! (until trusted? privileged? )))

report-privilege-error
(λ (f )

(open-file f ))))

Can export this function



25

Higher-order pointcuts

Since pointcuts are first-class, we could define until :
(define (until pcd1 pcd2 )

(λ (jpl)
(cond

[(empty? jpl) false]

[else (or (pcd2 jpl)
(and (pcd1 jpl)

((until pcd1 pcd2 ) (rest jpl))))])))

Can you write this using cflow?



26

Implementation background

• Hygienic macros (syntax-case)

• PLT Scheme module system

• Continuation marks:

? (w-c-m Tag Value Body) adds a mark

? (c-c-m Tag) retrieves marks



27

Continuation marks example

For example:

(define (fact n)

(w-c-m ’fact-arg n
(if (zero? n)

(begin (display (c-c-m ’fact-arg)) 1)

(∗ n (fact (sub1 n))))))



28

Continuation marks example

(fact 2)



28

Continuation marks example

(fact 2)

⇒ (w-c-m ’fact-arg 2

(∗ 2

(w-c-m ’fact-arg 1

(∗ 1

(w-c-m ’fact-arg 0

(begin (display (c-c-m ’fact-arg)) 1))))))



28

Continuation marks example

(fact 2)

⇒ (w-c-m ’fact-arg 2

(∗ 2

(w-c-m ’fact-arg 1

(∗ 1

(w-c-m ’fact-arg 0

(begin (display (c-c-m ’fact-arg)) 1))))))

displays (0 1 2)



29

Implementation of dynamic aspects

• Join points

? record with (w-c-m ’joinpoint fun-val . . . )

? retrieve current list with (c-c-m ’joinpoint)



29

Implementation of dynamic aspects

• Join points

? record with (w-c-m ’joinpoint fun-val . . . )

? retrieve current list with (c-c-m ’joinpoint)

• Dynamic aspects

? fluid-around does (w-c-m ’dynamic aspect . . . )

? application retrieves aspects with (c-c-m ’dynamic)



29

Implementation of dynamic aspects

• Join points

? record with (w-c-m ’joinpoint fun-val . . . )

? retrieve current list with (c-c-m ’joinpoint)

• Dynamic aspects

? fluid-around does (w-c-m ’dynamic aspect . . . )

? application retrieves aspects with (c-c-m ’dynamic)

• Function application has list of joinpoints and dynamic

advice, can invoke aspects (similar to semantics)



30

Implementation of static aspects

• Transform all lambdas to remember active aspects

• When applied, functions automatically reinstate static

aspects

• Make sure to use correct aspects during function

application



31

Limitations

AspectJ can match data on any join point in context:

pointcut factArg(int n) :
call(int fact(int)) && args(n);



31

Limitations

AspectJ can match data on any join point in context:

pointcut factArg(int n) :
call(int fact(int)) && args(n);

before(int x , int y) :
factArg(x ) && cflowbelow(factArg(y))

{
System.out.println(x + " " + y);

}



32

Limitations

Calling fact :

fact(4);



32

Limitations

Calling fact :

fact(4);

prints:

3 4

2 3

1 2

0 1



32

Limitations

Calling fact :

fact(4);

prints:

3 4

2 3

1 2

0 1

We only allow access to current function and arguments



33

Related work

• Kiczales et al: An Overview of AspectJ (ECOOP 2001)

• Wand et al: A Semantics for Advice and Dynamic Join

Points in Aspect-Oriented Programming (FOAL 2002)

• Clements et al: Modeling an Algebraic Stepper (ESOP

2001)

• Orleans: Incremental Programming With Extensible

Decisions (AOSD 2002)



34

Contributions

1. Defined semantics for aspects in a higher-order language

2. Explored consequences of these semantics

3. Developed lightweight implementation using continuation

marks


