Pointcuts and Advice for
Higher-Order Languages

David B. Tucker and Shriram Krishnamurthi

2003 March 20

An example
parse makeBadkup prettyPrint

\ SN/

readContents writeContents

) >

openHle closeFile

An example with aspects
Possible aspects:
trace calls to closeF'ile originating from makeBackup
check for legal arguments to writeContents

ensure the callee has permission to execute openkFile

Will show how to define such aspects in a higher-order
language

Why AOP in a higher-order language?

Many languages have higher-order first-class functions

* Scheme, ML, Haskell

Why AOP in a higher-order language?

Many languages have higher-order first-class functions

* Scheme, ML, Haskell
* Perl, Python, Ruby

Why AOP in a higher-order language?

Many languages have higher-order first-class functions

* Scheme, ML, Haskell
* Perl, Python, Ruby

What is interaction between FP and AOP?

* simplify specification of aspects?
* define more general aspects?

Challenges

How to specify aspects

* a function may have zero, one, or multiple names
* first-order or first-class aspects?

Challenges

How to specify aspects

* a function may have zero, one, or multiple names
* first-order or first-class aspects?

Scoping issues

* can define aspects outside top level
* when is an aspect in force?

Challenges

How to specify aspects

* a function may have zero, one, or multiple names
* first-order or first-class aspects?

Scoping issues

* can define aspects outside top level
* when is an aspect in force?

Will present extension of a higher-order language that
supports pointcuts and advice

How to specify?
Decided to make pointcuts and advice first-class
Consistent with design of functional languages

Define pcd as predicate over list of join points

Define advice as join point (procedure) transformer

How to specify pcd’s?

Calls to closelile

In AspectJ:
call(void closeFile())

How to specify pcd’s?

Calls to closelile

In AspectJ:
call(void closeFile())

In our language:

(A (pl)
(eq? close-file (first jpl)))

How to specify pcd’s?

Calls to closeF'ile originating from makeBackup
In AspectJ:

call(void closeFile())
¢9€5 cflow(withincode(void makeBackup()))

How to specify pcd’s?

Calls to closeF'ile originating from makeBackup
In AspectJ:

call(void closeFile())
¢9€5 cflow(withincode(void makeBackup()))

In our language:

(A (7p1)
(and (eq? close-file (first jpl))
(member make-backup (rest jpl))))

How to specify pcd’s?
(call f) = (A (ipl) (eq? | (first jpl)))

How to specify pcd’s?
(call f) = (A (ipl) (eq? | (first jpl)))

(within f) = (X (ypl) (and (not (empty? (rest jpl)))
(eq? [(second jpl))))

How to specify pcd’s?
(call) = (X (gp1) (eq? f (first jpl)))
(within f) = (X (ypl) (and (not (empty? (rest jpl)))
(eg? f (second jpl))))
(6965 pcdl ped?2) = (X (Jpl) (and (pedi jpl)
(pcd2 jpl))))

How to specify pcd’s?
(call) = (A (jpl) (eq? [(first jpl)))
(within f) = (X (ypl) (and (not (empty? (rest jpl)))
(eq? [(second jpl))))
(6965 pcdl ped?2) = (X (Jpl) (and (pedi jpl)
(pcd2 jpl))))
(cflow ped) = (A (jpl)
(cond
[(empty? jpl) false]
lelse (or (pcd jpl)
((cflow ped) (rest jpl)))]))

How to specify pcd’s?
Rewrite examples as:

Calls to closeFile
(call close-file)

How to specify pcd’s?
Rewrite examples as:

Calls to closeFile
(call close-file)

Calls to closeFile originating from makeBackup
(6969 (call close-file) (cflow (within make-backup)))

How to specify pcd’s?
Rewrite examples as:

Calls to closeFile
(call close-file)

Calls to closeFile originating from makeBackup
(6969 (call close-file) (cflow (within make-backup)))

Showed how to define pcd's

Next: how to define advice

How to specify advice?

Procedure transformers:

(define trace-advice
(A (proc)
(A (arg)
(printf "calling open-file")
(proceed proc arg))))

10

How to specify advice?

Procedure transformers:

(define trace-advice
(A (proc)
(A (arg)
(printf "calling open-file")
(proceed proc arg))))

All advice is around advice

10

10

How to specify advice?

Procedure transformers:

(define trace-advice
(A (proc)
(A (arg)
(printf "calling open-file")
(proceed proc arg))))

All advice is around advice

So far, no more or less than Aspect]

The around expression

To install a pcd and advice, introduce new type of
expression:

(around Pcd Advice Body)

11

The around expression

To install a pcd and advice, introduce new type of
expression:

(around Pcd Advice Body)

For example:

(let ([input (parse "filel")])
(around (call open-file) trace-advice
(pretty-print input "file2")))

11

Review of scope in Java
interface StringMaker {
String process(String s); }

12

Review of scope in Java
interface StringMaker {
String process(String s); }

final String familyName = "tucker";

StringMaker makeFamilyMember =
new StringMaker() {
String process(String givenName) {
return givenName + " " + familyName ; }};

12

Review of scope in Java
interface StringMaker {
String process(String s); }

final String familyName = "tucker";

StringMaker makeFamilyMember =
new StringMaker() {
String process(String givenName) {
return givenName + " " + familyName ; }};

makeFamilyMember.process("dave")

12

Review of scope in Java
interface StringMaker {
String process(String s); }

final String familyName = "tucker";

StringMaker makeFamilyMember =
new StringMaker() {
String process(String givenName) {
return givenName + " " + familyName ; }};

makeFamilyMember.process("dave")

= "dave tucker"

12

Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");

13

Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");

Static scoping (Java) = "dave tucker"

familyName's value from site of function definition

13

Review of scope in Java

What happens here...?

final String familyName = "krishnamurthi";
makeFamilyMember.process("dave");

Static scoping (Java) = "dave tucker"

familyName's value from site of function definition

Dynamic scoping = "dave krishnamurthi"

familyName's value from site of function application

13

What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply
to everything in that scope

14

What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply
to everything in that scope

In a higher-order language, can define aspects more
precise scopes

14

What is scope for aspects?

In AspectJ, aspects defined in top-level scope, and apply
to everything in that scope

In a higher-order language, can define aspects more
precise scopes

around aspects are statically scoped

apply to join points in text of body

14

Example #1

(around (call open-file) trace-advice
(open-file "boston"))

15

Example #1

(around (call open-file) trace-advice
(open-file "boston"))

This prints a trace message

15

Example #2

((around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")

16

Example #2

((around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")

Also prints a trace message

16

Example #3

(let ([apply-to-boston (A (f) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))

17

Example #3

(let ([apply-to-boston (A (f) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))

This does not print a trace message

17

Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (A (f) (f "boston"))])
(around (call open-file) trace-advice

(apply-to-boston open-file)))

18

Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (A (f) (f "boston"))])
(fluid-around (call open-file) trace-advice

(apply-to-boston open-file)))

19

Example #3 revisited

Can we define aspects that do apply?

(let ([apply-to-boston (A (f) (f "boston"))])
(fluid-around (call open-file) trace-advice

(apply-to-boston open-file)))
This does print a trace message

fluid-around aspects are dynamically scoped

apply to join points during evaluation of body

19

Example #2 revisited

((around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")

20

Example #2 revisited

((fluid-around (call open-file) trace-aduvice

(A (f) (open-file f)))

"boston")

21

Example #2 revisited

((fluid-around (call open-file) trace-advice

(A (f) (open-file f)))

"boston")

Does not print a message

21

Using dynamic aspects

Trace calls to close-file that originate from make-backup

22

Using dynamic aspects

Trace calls to close-file that originate from make-backup

(define (backup-system)
(for-each make-backup
(lzst "boston" "providence" "woonsocket")))

22

Using dynamic aspects

Trace calls to close-file that originate from make-backup

(define (backup-system)
(for-each make-backup
(lzst "boston" "providence" "woonsocket")))

(fluid-around (965 (call close-file)
(cflow (within make-backup)))
trace-aduvice
(backup-system))

22

Using static aspects

Ensure the callee has permission to execute openFile

Use stack inspection to check privileges:

a trusted user must ask for privilege

if privilege is on stack, with no intervening untrusted
code, then go ahead

Concisely: “only trusted frames UNTIL privilege granted”

23

Using static aspects

Easy:
(define protected-open-file
(around (€€ (call open-file)
(! (until trusted? privileged?)))
report-privilege-error
(A (f)
(open-file £))))

Can export this function

24

25

Higher-order pointcuts

Since pointcuts are first-class, we could define until:

(define (until pcdl pcd2)
(A (spl)
(cond

[(empty? jpl) false]

lelse (or (pcd2 jpl)

(and (pcd! jpl)
((until pcdl ped2) (rest jpl))))])))

Can you write this using cflow?

Implementation background

Hygienic macros (syntax-case)
PLT Scheme module system

Continuation marks:

*x (w-c-m Tag Value Body) adds a mark
x (c-c-m Tag) retrieves marks

26

Continuation marks example

For example:

(define (fact n)
(w-c-m 'fact-arg n
(if (zero? n)
(begin (display (c-c-m 'fact-arg)) 1)
(x n (fact (subl n))))))

27

Continuation marks example

(fact 2)

= (w-c-m 'fact-arg 2
(x 2
(w-c-m 'fact-arg 1
(% 1
(w-c-m 'fact-arg O
(begin (display (c-c-m 'fact-arg)) 1))))))

28

Continuation marks example

(fact 2)

= (w-c-m 'fact-arg 2
(x 2
(w-c-m 'fact-arg 1
(% 1
(w-c-m 'fact-arg O
(begin (display (c-c-m 'fact-arg)) 1))))))

displays (0 1 2)

28

Implementation of dynamic aspects

Join points

* record with (w-c-m 'joinpoint fun-val . . .)
* retrieve current list with (c-c-m 'joinpoint)

29

29

Implementation of dynamic aspects

Join points

* record with (w-c-m 'joinpoint fun-val . . .)
* retrieve current list with (c-c-m 'joinpoint)
Dynamic aspects

x fluid-around does (w-c-m 'dynamic aspect . . .)
* application retrieves aspects with (c-c-m 'dynamic)

Implementation of dynamic aspects

Join points

* record with (w-c-m 'joinpoint fun-val . . .)

* retrieve current list with (c-c-m 'joinpoint)
Dynamic aspects

x fluid-around does (w-c-m 'dynamic aspect . . .)

* application retrieves aspects with (c-c-m 'dynamic)

Function application has list of joinpoints and dynamic
advice, can invoke aspects (similar to semantics)

29

30

Implementation of static aspects

Transform all lambdas to remember active aspects

When applied, functions automatically reinstate static
aspects

Make sure to use correct aspects during function
application

Limitations

Aspect] can match data on any join point in context:

pointcut factArg(int n) :
call(int fact(int)) €969 args(n);

31

Limitations

Aspect] can match data on any join point in context:

pointcut factArg(int n) :
call(int fact(int)) €969 args(n);

before(int z, int y) :
factArg(x) €969 cflowbelow(factArg(y))

1

System.out.printin(z + " " + y);

}

31

Calling fact:
fact(4);

prints:
34
23
12
01

Limitations

32

Limitations
Calling fact:

fact(4);

prints:
34
23
12
01

We only allow access to current function and arguments

32

Related work

Kiczales et al: An Overview of Aspect) (ECOOP 2001)

Wand et al: A Semantics for Advice and Dynamic Join
Points in Aspect-Oriented Programming (FOAL 2002)

Clements et al: Modeling an Algebraic Stepper (ESOP
2001)

Orleans: Incremental Programming With Extensible
Decisions (AOSD 2002)

33

Contributions

1. Defined semantics for aspects in a higher-order language
2. Explored consequences of these semantics

3. Developed lightweight implementation using continuation
marks

34

