
A Semantics for Pointcuts and Advice in
Higher-Order Languages

David B. Tucker and Shriram Krishnamurthi
Department of Computer Science

Brown University
Providence, RI 02912

March 2003

Abstract

Aspect-oriented programming has proven to be a useful model for developing
software that encapsulates features in separate modules. AspectJ [3], one popular
aspect-oriented language, extends Java with pointcuts and advice, which allow the
programmer to modify the execution of existing code. However, formal semantics
for pointcuts and advice only cover first-order procedural languages. We wish to
port this model of aspect-oriented programming to higher-order languages in order
to explore the synergy between the aspect-oriented and functional programming
paradigms.

To this end, we define an operational semantics for pointcuts and advice in
a Scheme-like language. Our formulation relies on two key ideas. First, we de-
fine aspects as first-class values, which integrates well with a functional language.
Second, we allow an aspect to apply to a section of code either statically or dy-
namically. Our semantics reduce this distinction to the related notion of static and
dynamic scope.

1 Introduction
Several researchers have proposed aspect-oriented software development as an archi-
tecture that enables the programmer to encapsulate certain features as separate units of
code. We often term these features “cross-cutting”—their implementation cuts across
the modular structure provided by the programming language. By extending the lan-
guage with new capabilities, the programmer can define each feature in its own piece
of code, called an aspect. AspectJ, an aspect-oriented extension to Java, allows the pro-
grammer to create aspects through mechanisms called pointcuts and advice, which we
shall describe in detail. However, these mechanisms currently exist only in procedural
and object-oriented languages, and formal semantics work exists only for first-order
procedural languages [6]. We wish to study aspects in a functional setting.

We have two reasons for examining aspects in the context of a functional language.
First, many languages support first-class higher-order functions: not only traditional

1

functional languages such as Scheme, ML, and Haskell, but mainstream languages
including Perl, Python, and Ruby. We therefore need to understand how to define
aspects in the presence of first-class functions. Second, we want to know whether
aspects are useful in a functional language. What parts of AOP do we need, and which
can we do without? Conversely, does functional programming enhance the capabilites
of AOP? In a separate paper, we show how to define pointcuts and advice as first-class
values in a functional language, and demonstrate some possible uses of higher-order
aspects [5].

We face several challenges in specifying a formal semantics for a functional lan-
guage with pointcuts and advice. For one, we need a way to identify the function at a
call site; we cannot do a simple name comparison as in a first-order language. Also, to
what parts of a program’s execution does an aspect apply? We allude to the notions of
scope in a function language and define both static and dynamic aspects. Finally, we
must provide means for examining the sequence of function calls in the dynamic extent
of an expression.

The remainder of the paper is organized as follows. Section 2 reviews the pointcut
and advice model of aspect-oriented programming, both in Java and our functional
language. Section 3 presents our operational semantics, and explains key rules in detail.
Section 4 discusses related work, and Section 5 concludes.

2 Pointcuts and Advice in Higher-Order Languages
In this section, we first review the AspectJ model of aspect-oriented programming. We
then describe our extension of a functional language with pointcuts and advice.

2.1 AspectJ
Since our model of aspect-oriented programming tries to mimic the style of constructs
in AspectJ, we will first discuss AspectJ’s definitions of pointcuts and advice. An as-
pect relies on modifying a program’s behavior at some points in its execution, particu-
larly points that the programmer perhaps did not anticipate in advance. They call these
join points, and they depend both on the underlying language as well as the aspect-
oriented extension to it. AspectJ defines many possible join points for Java, including
method calls, variable accesses, exception throws, and object or class initialization. We
will focus on method call join points because they suffice for demonstrating the utility
of AspectJ.

Each join point presents an opportunity for a feature to affect the computation. The
effect might be as simple as writing some trace message to output, or as complex as
replacing the next computation before it occurs. The specification of an aspect therefore
has two components: the pointcut descriptor (or pcd) defines the set of join points at
which the aspect should apply, and the advice describes what computation to perform
at each applicable join point.

To illustrate these two concepts, consider a simple reader library with the call graph
shown in Figure 1. The following AspectJ pcd refers to any join point where the method
readProf () calls the method readInfo():

2

readLines

readSSN readName

readDeptreadInforeadYear

readStudent readProf

Figure 1: Call graph for a reader library

call(String readInfo()) && withincode(String readProf ())

AspectJ provides many means of defining pointcut descriptors. Simple pcd’s, such
as those matching method calls and variable accesses, can combine via boolean con-
nectives to create complex pcd’s, as in the above example. In addition, the construct
cflow(p) matches any join point within the dynamic extent of a join point matching
p. For example, the following pcd describes all calls to readLines() originating from
readStudent():

call(String readLines(int)) && cflow(withincode(String readStudent()))

An aspect’s advice specifies what computation to perform at those join points de-
noted by the pcd. The programmer writes advice as standard Java code; for example,
the following code prints a trace message before calling the method readLines():

before() : call(String readLines(int))
�

System.out.println("Calling readLines");�
The programmer can define different kinds of advice depending on how execution

should proceed with respect to a given join point. The three basic kinds of advice
are before, after, and around. Before advice executes before control enters a join
point; after advice executes when control returns, possibly due to a thrown exception.
Around advice replaces the current join point with a new expression to evaluate, but
can reinstate the displaced computation via the keyword proceed. For example, the
following around advice calls the intercepted method readLines(), prints the returned
value, and returns the value to the original context:

String around() : call(String readLines(int))
�

String s � proceed();
System.out.println("value is " � s);
return s;�

The pcd and advice are not strictly independent entities in AspectJ. The pcd may
pattern match against values in the join points it specifies; the advice can then refer to
these value in its code. Aspect definitions may use this facility to capture the arguments

3

to a method call; for example, we can verify that the argument to readLines() is positive
before calling it:

String around(int n) : call(String readLines(int)) && args(n)
�

if (n ��� 0)
return "";

else
return proceed(n);�

Some relevant points to remember about Java and AspectJ are the following:

� AspectJ defines a special language for pointcut descriptors; it includes call for
matching a method call, and cflow for matching join points in the dynamic con-
text.

� Aspects are not instantiated; they are not first-class objects.

� Methods are first-order.

In the following section, we will see how our language differs on the above points.

2.2 Defining Pointcuts and Advice
In previous work, we addressed the challenges of adding pointcuts and advice to a
higher-order language [5]. Several design decisions confront us in the context of a
functional language. First, how should we specify aspects? Do we create a specialized
language, as in AspectJ, or make aspects first-class values? Second, since functions
are inherently nameless, how do we identify them? Third, what scope does an aspect
have; that is, when should a given aspect be in force? We answer these questions in
this section.

We first address the specification of pointcuts and advice. We decided to make
pointcuts and advice first-class values, thus enabling the programmer to use the full
power of higher-order functions when manipulating aspects. Specifically, we define
a pcd as a predicate over list of join points, and advice as a join point (procedure)
transformer.

Consider the pointcut we saw earlier: the set of join points representing calls to
read-info from read-prof . In our model, a pcd consumes a list of functions—one for
each join point, with the callee as the first element, the caller as the second, and so
forth—and returns true or false. Using eq? to compare functions for equality, we can
define the pcd as follows:

(� (jp)
(and (eq? read-info (first jp))

(not (empty? (rest jp)))
(eq? read-prof (second jp))))

The primitive eq? deems two functions equal if they have the same source location and
have identical environments. We use eq? to solve the problem of identifying functions

4

in pcd’s; in the above code, for example, both the variable read-info and the expression
(first jp) evaluate to functions, which can then be compared using eq?. We will discuss
the semantics in detail in the section 3.

The other pointcut we defined earlier denoted all calls to read-lines that originated
from read-student. In our language, we define this pcd as follows:

(� (jp)
(and (eq? read-lines (first jp))

(memq read-student (rest jp))))

where memq checks whether an element is a member of a list. Informally, the pcd says
“return true if read-lines is the first join point, and read-student occurs in the rest of the
join point list.”

Since pcd’s are first-class values, we can define the standard pcd operators without
any special language support:

(call f) � (� (jp) (eq? f (first jp)))
(within f) � (� (jp) (and (not (empty? (rest jp)))

(eq? f (second jp))))
(cflow pcd) � (� (jp)

(and (not (empty? jp))
(or (app/prim pcd jp)

(app/prim (app/prim cflow pcd)
(rest jp))))))

(&& pcd1 pcd2) � (� (jp)
(and (app/prim pcd1 jp)

(app/prim pcd2 jp))))

The syntactic form app/prim performs a “primitive application”; that is, it applies a
function to an argument without examining whether aspects apply. If we had instead
defined cflow using (pcd jp), that call would itself invoke aspect weaving, which in turn
would evaluate the same cflow pcd, leading to an infinite loop.

Using these operators, we can rewrite the two above examples as follows:

(&& (call read-lines) (within read-name))

(&& (call read-lines) (cflow (within read-student)))

Notice that these definitions look very close to the corresponding AspectJ code.
We now turn to the definition of advice. We define advice as a join point trans-

former: it consumes a procedure (the current join point) and returns a new procedure.
For example, the following advice prints a message before invoking the original func-
tion:

(� (p)
(� (a)

(printf "Calling read-lines")
(app/prim p a)))

5

In this case, the use of app/prim ensures that applying p to a will not invoke any further
aspects, which would potentially lead to an infinite loop. This use corresponds to the
AspectJ keyword proceed.

The other examples of advice are equally straightforward. To print the return value
of a function, we write:

(� (p)
(� (a)

(let ([s (app/prim p a)])
(printf "value is ˜a" s)
s)))

To test an argument before calling the function, we define the following advice:

(� (p)
(� (a)

(if (��� a 0)
""
(app/prim p a))))

Our model has one limitation with respect to AspectJ: we can only match arguments
from the current join point, whereas AspectJ can match values anywhere in the dynamic
context.

Given these definitions of pointcuts and advice as first-class values, we need a
mechanism for installing aspects in the program. An aspect must be able to refer to
procedures in its pointcut descriptors, so it must be defined within the scope of any
procedures it advises. In a first-order procedural language, there exists only one scope
for procedures: the top-level scope. Thus, all aspects can also be defined in a single
top-level scope. In a functional language, however, procedures may be defined at any
point in the program. Therefore, we must also allow an aspect to be defined at any
program point, since it needs to be in the scope of those procedures it advises. We
accomplish this by adding a new expression to our language for “around” aspects:

(around Pcd Advice
Body)

Informally, this expression means “the aspect defined by Pcd and Advice applies in
Body.” For example, we could write:

(let ([read-lines . . .]
[trace-advice (� (p)

(� (a)
(printf "Calling read-lines")
(app/prim p a)))])

(around (call read-lines) trace-advice
(list (read-lines 2)

(read-lines 5)
(read-lines 3)))))

6

However, we have glossed over a subtlety: what does it mean to say an aspect “applies
in the body”?

To answer this question, we allude to the notions of scope in a functional language.
Aspects created by (around Pcd Advice Body) are statically scoped. They apply to any
function applications in the text of Body. Consider this example:

(around (call read-lines) trace-advice
(read-lines 7))

In this case, the advice prints a trace message, because the application of read-lines to
7 occurs in the text of the body. However, an application in the text of the body does
not necessarily occur while evaluating the body. Consider the following:

((around (call read-lines) trace-advice
(� (n) (read-lines n)))

7)

The evaluation of this expression also prints a trace message, because the application
of read-lines to n is in the text of around’s body, even though the dynamic application
occurs outside.

Conversely, an around aspect does not apply to applications that occur during the
evaluation of its body, but that were defined outside its scope. For example, the follow-
ing expression does not print a message:

(let ([apply-to-7 (� (f) (f 7))])
(around (call read-lines) trace-advice

(apply-to-7 read-lines)))

Since we may wish to define aspects that do apply in the above example, we also
allow dynamically scoped aspects. The expression (fluid-around Pcd Advice Body)
introduces a dynamically scoped aspect: it applies to any function applications during
the evaluation of Body.

If we rewrite the previous example using fluid-around, its evaluation does print a
trace message:

(let ([apply-to-7 (� (f) (f 7))])
(fluid-around (call read-lines) trace-advice

(apply-to-7 read-lines)))

Although the application of read-lines occurs outside the text of fluid-around, it is
within the dynamic extent of the fluid-around.

Finally, consider the case where the body of a fluid-around contains an application,
but its evaluation does not occur during the evaluation of the body:

((fluid-around (call read-lines) trace-advice
(� (n) (read-lines n)))

7)

This code does not print a trace message.
We will see that the definitions of static and dynamic aspects correspond to the

similar notions of variable scope in a functional language, and that our semantics draw
upon this similarity.

7

3 Semantics
In this section we lay out the semantics for a functional language extended with support
for pointcuts and advice. We first give a primer on the CEKS machine, the abstraction
with which we define our operational semantics. Subsequent sections then explain
some key rules, including those for declaring aspects, testing function equality, and
applying functions.

3.1 Background on the CEKS machine
We use a variation on the CEKS machine [2] as the model for our semantics. This
model defines program behavior by a transition relation from one program state to the
next. To represent the state of a program, we rely on the ability to break any expression
into two pieces: the sub-expression to evaluate next, and the “rest” of the computation.
We can visualize this distinction by drawing a box around the first piece; for example:

(� 1 ((� 2 3) (
 y 4)))

We call the expression inside the box the control string; the context outside of it is the
current continuation. In this example, the continuation says what to do with the result
of (� 2 3):

1. next, evaluate (
 y 4) and subtract it from the result

2. then, add the above result to 1

3. finally, terminate with the above result as the value of the entire computation

We can represent this continuation as a tagged list:�
sub-left-k � (
 y 4) ��

add-right-k � 1 �
mt-k
�

The CEKS machine adds two more pieces of information to the state of a compu-
tation. First, it pairs each control string with an environment that maps variable names
to locations in an abstract store. Second, each state has an abstract store that maps lo-
cations to value–environment pairs. Formally, we represent the state of a computation
with a triple of the following form:

1. The control string (C) and its environment (E).

2. The current continuation (K).

3. The current store (S).

For example, if the above expression was inside a context where y was set to 5, the
triple would be:���

(� 2 3) � � y �������� �
���
sub-left-k � (
 y 4) � � add-right-k � 1 � mt-k
�
��� �������� 5

�

8

We have three reasons for using the CEKS in defining our semantics. First, recall
that pointcuts can require knowledge of the control path that led the current point in the
computation; thus, we need a concrete representation of the current continuation (the
stack). Second, since the machine uses an environment to maintain variables, we can
easily add a second environment to keep track of aspects in scope. Third, programmers
often use side-effects in writing useful aspects (e.g. logging, tracing, error reporting);
hence, we include an abstract store in our model.

3.2 Declaring aspects
To declare aspects, we added the around and fluid-around expressions to a base func-
tional language:

(around Pcd Advice Body)

(fluid-around Pcd Advice Body)

We will first describe the semantics of around; the semantics of fluid-around are
nearly identical.

When the programmer declares an aspect via around, the machine may later access
the aspect during function application. This situation resembles the use of variables:
the programmer declares them with � or let, and later accesses them by variable refer-
ences. Drawing on this analogy, we add a second environment to our machine—one for
storing aspects. The reduction rules for our model will be similar to those for the CEKS
machine, except that closures now include both a variable environment and an aspect
environment. The template for a reduction rule now includes aspect environments ���
and ��� : ��� � �!�#"��$�#�%�&
���'(�$�#)*��
+	,� ���-� �.��"��/�����$
��#'0�1�2)3�&

The evaluation of around has three reduction rules. The first rule moves evaluation
to the pcd, 4 � , while remembering that the declaration was for a 5!687.6,9;: aspect:���

(around 4 � 4 � 4=<) �#">���%
��#'?�#)@
	A� ��� 4 � ��">�#��
�� � around1-k ��5!687.6B9.:;� � 4 � �#">���%
�� � 4C</��">�#��
��#'D
��#)E

The second rule says that once the pcd computes to a value (VC �), evaluate the

advice (MC �) next:�
VC �$� � around1-k �GFGH#I2J8K;� MC �1� MC < �#'D
��2)E
	A� �

MC �/� � around2-k ��FGH2I#JLK/� VC �1� MC < �#'D
��#)E

The third rule applies after both the pcd and advice become values. The rule moves

evaluation to the body of the around expression, but evaluates it with an extended
aspect environment. We add the triple

� FGH2I#JLK;� VC �!� VC �$
 to the environment; that is,
the scope tag (for around, it’s 5!687.6,9;:), the pcd value (VC �), and the advice value
(VC �):�
VC � � � around2-k �GFGH#I2J8K;� VC � � � 4=<1��"�</�#��<&
���'M
��#)@
	A� ��� 4C</��"�</����<.N � FGH2I#JLK;� VC � � VC �
POQ
��#'?�2)E

9

To support fluid-around, we simply add a rule similar to the first one for around,
except that its tag is R;S;T87$U*9;: :���

(fluid-around 4 � 4 � 4C<) �#">���%
���'V�#)E
	A� ��� 4 � ��">�#��
�� � around1-k ��R;S;TL7$UW9;:/� � 4 � ��"0����
�� � 4C</�#">���%
��#'D
��2)E

In short, the semantics of aspect declaration say to evaluate the pcd and advice,

then add them (along with the appropriate FGH2I#JLK tag) to the aspect environment when
evaluating the body.

3.3 Function equality
Next we address the issue of function identity in a higher-order language. Recall that
the pointcut descriptor of an aspect can refer to one or more procedures; for example,
the pcd (call read-lines) denotes join points representing calls to the function read-
lines. Thus, at each function application, we must determine whether the function
being applied is read-lines. In a language like Java, this would be an easy test—we
just use string equality to compare the name read-lines with the name of the method
being invoked. In a functional language, however, two problems arise. First, the term
in the function position need not be a variable name—it may be an arbitrary expression
that computes to a function. Second, even if the function is the variable read-lines, we
cannot tell by its name whether this was the read-lines in scope when the aspect was
defined. Consider the following expression:

(let ([read-lines . . .])
(around (call read-lines) trace-advice

(let ([read-lines (� (x) x)])
(read-lines 12))))

In this example, should the call to read-lines invoke the aspect? The answer is no—
because the read-lines in the pcd really refers to the outer read-lines, while the function
application refers to the inner read-lines.

To cope with this challenge of function equality, we will borrow the definition
of equality used in Scheme. The predicate eq? in Scheme can be used to compare
functions. One interpretation of function eq?-ness is:

Two function closures are equal if they have the same textual source loca-
tion and their environments are identical.

To capture this meaning, we assume that each � -expression in the source program is
labelled with a unique location identifier. Two function closures are then eq? if and
only if both identifiers are the same, and both environments are equal. The following
rule illustrates this definition:���

(� (XAY) 4ZY) [Q\]��"�Y^�#��Y_
�� � eq2-k � � (� (X) 4) [2��">�#��
���'D
��#)E
	A� ���-` �2a��#��
��#'?�2)E

where

`
is true if bE�cb Y and "d�e" Y , false otherwise

10

This definition of function equality is a conservative approximation of two func-
tions’ observational equivalence, but we can compute it in constant time.

3.4 Primitive function application
Our language has two constructs for function application: the default one, which in-
jects aspects into the computation, and a “primitive” application (named app/prim),
which does not observe aspects. As we saw earlier, we use app/prim mainly to model
AspectJ’s proceed calls from within the body of an aspect’s advice.

The semantics of app/prim are the same as that of application in the original CEKS
machine, save for the question of how to handle the aspect environment. With regular
(variable) environments, we have two choices:

1. We can use static scoping—we evaluate the body of the procedure using the
environment from its definition site.

2. We can use dynamic scoping—we evaluate the body of the procedure using the
environment from its application site.

Since we support both static and dynamic aspects, we use some aspects from both
aspect environments. Specifically, we evaluate the body of the function using static
aspects from the site of definition, and dynamic aspect frmo the site of appication.

The evaluation of primitive application comprises three reduction rules. The first
rule moves evaluation to the function position, 4f� , and keeps track of the aspect envi-
ronment from the application site:���

(app/prim 4g�@4C�) ��">�#��
���'?�2)E
	A� ��� 4g�!��">�#��
�� � appprim1-k � � 4=�1�#">���%
�������'M
��#)@

The second rule moves evaluation to the argument position:�

VC hjiGk�� � appprim1-k � MC l�mQn;����l�o&o8��'M
��2)E
	A� �
MC l�mQnp� � appprim2-k � VC hjiGk��#��l#oGo8�#'D
��#)E

The third rule performs the actual application. It moves evaluate to the body of the� expression, extends the environment and store to reflect the parameter binding, and
combines the two aspect environments as described above:�
VC l�mQn � � appprim2-k � � (� (x) M) [��" hqiGk �#� hji&k
���� l�o&o ��'M
��2)E
	A� ��� 4r�#"sY^�#� l#oGoAt uwvPx2y z2{w|~} � hji&kLt � �#yP�#{w|
��#'?�2)�Y�

where
� "sY �#)EY�
E� � ">�2)E
W� � X��� VC l�mQn �

To extend an environment and store with a variable and value, we use the following
definition:� ">�2)E
W� � X��� VC

�%��� "�N X(�����O �2)�N ���� VC OQ
 where �>������.���)E�
� "0�#)E
!� � XB���� VC �!�&�G�G�G��XA�0�� VC � �%��� "0�#)E
!� � XB���� VC � � ���&�G�-� � XA�>�� VC � �

11

These reduction rules for primitive application only differ from the original CEKS
machine in one respect: they create the appropriate aspect environment before evaluat-
ing the body of the function.

3.5 Regular function application
We now come to the heart of our semantics: the mechanism for invoking aspects during
function application.

Three things must happen during function application. First, we must generate a
join point representing the application. We will do this by adding a special “application
mark” (mark-app-k) to the currrent continuation which stores the callee. This mark
has no direct effect on the computation; when the function returns, the following rule
discards the mark:�
VC � � markapp-k � VC hjiGk��#'D
��#)E
�	,� �

VC �#'?�#)@

Second, we must compute the list of current joinpoints, which each pcd takes as an

argument. Since the current continuation represents each join point with exactly one
mark-app-k, we compute this list via the following function:�E�

mt-k ��� �
empty �#a8�#a.
�E� �

markapp-k � VC hji&k���'D
w��� �
(cons VC hqiGk �E� '?�) �2a��#a.
�E� � �q���q�#'D
w��� ��� '?�

Finally, we must check each aspect in the aspect environment: if the pcd holds, we ap-
ply the advice (a procedure transformer) to the procedure. We then take the procedure
resulting from all such transformations and apply it to the original argument.

Three rules dictate the evaluation of function application. The first rule moves
evaluation to the function position, remembering the aspect environment from the ap-
plication site:���

(4��E4C�) �#">���%
���'V�#)E
	A� ��� 4g�!��">�#��
�� � app1-k � � 4C�/��">�#��
��#">������'M
��#)@

The second rule moves evaluation to the argument position: eval’s arg position:�

VC � � � app1-k � MC � �#"�l#oGo8�#��l#oGo8�#'D
��2)E
	A� �
MC � � � app2-k � VC � ��"�l#oGoL����l#oGo��#'D
��#)E

The third rule applies aspects as described above:�
VC l�mQn;� � app2-k � � (� (x) M) [��#"�hji&k�����hqiGk/
��#"�l#oGo8�#��l#oGo8�#'D
��2)E
	A� ���

(app/prim � � t � l#oGoAt � arg) �#"sY-��� l�o&o
��#'VY-�#)�Y�

where:

' Y � �
markapp-k � � (� (x) M) [#�#"�hji&k8����hjiGk/
���'D

12

� " Y �#) Y
�� � ">�2)E

� �

fun �� �
(� (x) M) [�#" hji&k ��� hqiGk
�� arg �� VC l#mQn � jp �� �E� ' Y � �

� � �¡�¢ £P¤�¥#¦^§;¨W©ª�«_¬1¦^§;¨W©­-¬]®w¯ «�°�±P²/³ ­ ªwª � JLH2´pµ*�� VC µo$¶]· �$¸/´!¹�º^H2K!µ*�� VC µl�·G»�¼ ¶]½ �

Let us explain this rule in detail. First, it adds a mark to the continuation, creating'VY . Second, it binds variables for the function argument, joinpoint list, and aspect
components (the ¾�¿AJ8H2´ µ and ¾�¿�¸.´!¹�º^H2K µ) in the environment and store. The function� then creates a new expression that checks each aspect’s pcd and applies its advice
if required. We define � as:

� � À ��� fun

� �^Á ��� (app/prim (� (r) (if (app/prim J8H2´ µ jp)
(� (v) ((app/prim ¸.´!¹�º^H#K µ r) v))
r))� �^Á 	fÂG�)

Notice the following points about � :

1. If no advice exists, it simply returns the original function (to be app/prim’d to
the argument).

2. It applies each pcd to the list of joinpoints.

3. If some pcd holds, the it applies the final transformed procedure to the original
argument. Note that this application may also invoke aspects.

This concludes our discussion of the operational semantics; we present the entire
set of definitions and reduction rules in the Appendix.

4 Related Work
AspectJ [3], an aspect-oriented extension to Java, allows the programmer to define
pointcuts and advice. This model served as the starting point for our investigation. As-
pectJ uses a special language for defining pointcuts, and includes the cflow operator.
The language has a tighter integration between pointcuts and advice due to matching:
advice can reference data from any join point in the dynamic context, whereas our se-
mantics limits inspection to the current join point. However, AspectJ does not address
the issue of higher-order functions, and thus lacks the distinction between static and
dynamic advice that we support.

Wand et al. defined a denotational semantics for AspectJ-style pointcuts and ad-
vice [6]. Their semantics defines a language with first-order procedures in a top-level
recursive environment. They also use an aspect environment, but like the procedure en-
vironment, it exists in a top-level scope. Their representation of advice as a procedure
transformer inspired our definition of first-class advice for a functional language.

13

Orleans defined a predicate dispatching system for Scheme, where each the system
dispatches each message according to a branch consisting of a predicate and a body
[4]. These two components are first class values, and thus equivalent to our pcd and
advice formulation. His system also supports cflow by having each decision point (join
point) maintain a pointer to the previous decision point. Our system differs from his
in two ways. First, we do not require the programmer to use a special message syntax.
Second, Orleans does not address the issue of scope—in his system, the programmer
must define messages at the top level.

In previous work, we argue for the usefulness of our aspect-oriented language, and
describe a lightweight implementation in PLT Scheme [5]. We give examples that
illustrate the power of higher-order pointcuts and advice, and exploit the distinction
between static and dynamic aspects. Our implementation relies on two features of PLT
Scheme: the ability to define new languages using macros and the module system, and
a language feature (“continuation marks” [1]) that allow us to use a built-in dynamic
environment.

5 Conclusion
We have presented an operational semantics for pointcuts and advice in a higher-order
language. We based our semantics on the CEKS machine, which represents the current
continuation explicitly as a list, and uses an abstract store to model state. Our work has
two key design points. First, we decided to define pointcuts and advice as first-class
values: a pointcut is a predicate over a list of join points, and advice is a procedure
transformer. Second, we distinguish between static aspects, which apply to the text
of an expression no matter where it executes, and dynamic aspects, which apply to
computations during the evaluation of an expression. The semantics implement this
behavior by maintaining an aspect environment, and employing it in accordance with
the standard rules for static and dynamic scope.

References
[1] John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an algebraic

stepper. Lecture Notes in Computer Science, 2028, 2001.

[2] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A
syntactic theory of sequential control. Theoretical Computer Science, 52:205–237,
1987.

[3] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In European Conference on Object-
Oriented Programming, 2001.

[4] Doug Orleans. Incremental programming with extensible decisions. In Interna-
tional Conference on Aspect-Oriented Software Development, 2002.

14

[5] David B. Tucker and Shriram Krishnamurthi. Pointcuts and advice in higher-order
languages. In International Conference on Aspect-Oriented Software Develop-
ment, 2003.

[6] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. Appeared in Informal
Workshop Record of Foundations of Object-Oriented Languages 9, pages 67-88,
2002.

Appendix

Expressions M ÃqÃÄ� xt (� (x) M) [t (M M)t (o M . . .)t (if M M M)t (set! x M)t (eq? M M)t (around M M M)t (fluid-around M M M)t (app/prim M M)

b = source location tag

Primitive operations o ÃqÃÄ� const firstt restt empty?

Environments "d�cX(����� = store location

Aspect environments �r� �;� FGH#I2J8K;� VC � VC
 �FGH2I#JLK � � 5$687.6B9;:/��R;S;TL7�U*9;: �
Stores)C�Å���� VC

Expression closures MC � � 4r��">�#��

Value closures VC � �-Æ ��"0����

Values V Ã�ÃÇ� (� (x) M) [t b

15

Primitive values b ÃqÃÄ� truet falset emptyt (cons VC VC)

Continuation codes ' ÃqÃÄ� mt-kt �
app1-k � MC ��">�#�s�#'D
t �
app2-k � VC �#">������'D
t �
if-k � MC � MC �#'D
t �
set-k � � XW��"0����
���'M
t �
eq1-k � MC ��'D
t �
eq2-k � VC ��'M
t �
around1-k ��FGH2I#JLK;� MC � MC ��'M
t �
around2-k ��FGH2I#JLK;� VC � MC �#'D
t �
markapp-k � VC ��'M
t �
appprim1-k � MC �#�s��'M
t �
appprim2-k � VC �#�s�#'D
t �
op-k ��Èp� � VC �G���q�Ç
�� � MC �G�����
���'D

variables��� XW�#">���%
���'V�#)E
�	,� �) � " � X,������'V�#)E

function application���

(4 � 4 �) �#">���%
���'V�#)E
	A� ��� 4 � ��">�#��
�� � app1-k � � 4 � ��">�#��
��#">������'M
��#)@

�
VC � � � app1-k � MC � �#"�l#oGo8�#��l#oGo8�#'D
��2)E
	A� �

MC �/� � app2-k � VC �!��" l#oGo ��� l#oGo �#'D
��#)E

�
VC l�mQn � � app2-k � � (� (x) M) [�#" hji&k ��� hqiGk
��#" l#oGo �#� l#oGo �#'D
��2)E
	A� ���

(app/prim � � t � l#oGoAt � arg) �#"sY-��� l�o&o
��#'VY-�#)�Y�

where:

' Y � �
markapp-k � � (� (x) M) [#�#"�hji&k8����hjiGk/
���'D

� " Y �#) Y
�� � ">�2)E

� �

fun �� �
(� (x) M) [�#" hji&k ��� hqiGk
�� arg �� VC l#mQn � jp �� �E� ' Y � �

� � �¡�¢ £P¤�¥#¦^§;¨W©ª�«_¬1¦^§;¨W©­-¬]®w¯ «�°�±P²/³ ­ ªwª � JLH2´ µ �� VC µo$¶]· �$¸/´!¹�º^H2K µ �� VC µl�·G»�¼ ¶]½ �

16

� � À ��� fun

� �^Á ��� (app/prim (� (r) (if (app/prim J8H2´ µ jp)
(� (v) ((app/prim ¸.´!¹�º^H#K1µ r) v))
r))� �^Á 	fÂG�)

�E�
mt-k ��� �

empty �#a8�#a.
�E� �
markapp-k � VC hji&k���'D
w��� �

(cons VC hqiGk �E� '?�) �2a��#a.
�E� � �q���q�#'D
w��� ��� '?�
� ">�#)@
É� � X��� VC

�Ê� � "0N X(�����OP�#)�N ���� VC O_
 where �0��Ë���/�Ë�)@�� "0�#)E
É� � X3���� VC �!�G�G�&�G��XA�>�� VC � �Ê� � ">�2)E
W� � XB���� VC � � �e�G�&�$� � XA�>�� VC � �
�
VC � � markapp-k � VC hjiGk �#'D
��#)E
�	,� �

VC �#'?�#)@

primitive operations���

(o 4 � 4 � . . .) �#">���%
��#'?�#)@
	A� ��� 4 � ��">�#��
�� � op-k ��Èp� �
�� ��� 4 � �#">���%
��&�q���
���'M
��#)@

�
VC � � op-k ��Èp� � VC Y �G�����
�� � MC � MC Y �&�q���
���'M
��#)@
	A� �

VC Y � � op-k ��Èp� � VC � VC Y �G���q�Ç
�� � MC Y �G���q�Ç
��#'D
��2)E

�
VC �B� � op-k ��Èp� � VC �pÌÉ�!�&�q����� VC �G
�� �
��#'D
��2)E
	A� �-Í � Èp� VC �!�&�q����� VC �8����'?�2)E

Í � cons � VC � � VC � �Î� (cons VC � VC �)Í � first � (cons VC � VC �) �Î� VC �Í � rest � (cons VC � VC �) �Î� VC �Í � empty? � VC �Î� �
true � � a8��Ï3
��2a/
 if VC � �

empty ��">�#��
 , Ï fresh
� �

false � � a���Ï3
��2a/
 otherwise, Ï fresh

if���
(if 4g�@4=�+4 <) �#">���%
���'V�#)E
	A� ��� 4g�!��">�#��
�� � if-k � � 4=�1��"0����
�� � 4 < �#">���%
��#'D
��2)E

���
true ��">�#��
�� � if-k � MC � � MC <1��'M
��2)E
	A� �

MC � �#'?�#)@

17

���
false �#">���%
�� � if-k � MC �1� MC < ��'M
��#)@
	A� �

MC < �#'?�#)@

set!���

(set! x 4 �) ��"0����
���'V�#)E
	A� ��� 4 � ��">�#��
�� � set-k � � XW�#">���%
��#'D
��2)E

�
VC � � set-k � � XW�#">���%
��#'D
��2)E
	A� ���

VC �2a��2a/
��#'?�2)�N " � X,�E�� VC O_

eq?���

(eq? 4��@4C�) �#">���%
���'V�#)E
	A� ��� 4g�!��">�#��
�� � eq1-k � � 4C�1�#">���%
��#'D
��2)E

�
VC � � � eq1-k � MC � �#'D
��2)E
	A� �

MC � � � eq2-k � VC � ��'D
��#)E

���

(� (XAY) 4ZY) [\ ��"�Y^�#��Y_
�� � eq2-k � � (� (X) 4) [2��">�#��
���'D
��#)E
	A� ���-` �2a��#��
��#'?�2)E

where

`
is true if bE�cb�Y and "d�e"sY , false otherwise

around and fluid-around���
(around 4g�@4C�+4 <) �#">���%
��#'?�#)@
	A� ��� 4g�!��">�#��
�� � around1-k ��5!687.6B9.:;� � 4C�1�#">���%
�� � 4 < ��">�#��
��#'D
��#)E

���
(fluid-around 4 � 4 � 4C<) �#">���%
���'V�#)E
	A� ��� 4 � ��">�#��
�� � around1-k ��R;S;TL7$UW9;:/� � 4 � ��"0����
�� � 4C</�#">���%
��#'D
��2)E

�
VC � � � around1-k �GFGH#I2J8K;� MC � � MC </�#'D
��2)E
	A� �

MC �/� � around2-k ��FGH2I#JLK/� VC �1� MC < �#'D
��#)E

�
VC �1� � around2-k �GFGH#I2J8K;� VC �!� � 4 < ��" < �#� <
���'M
��#)@
	A� ��� 4 < ��" < ��� < N � FGH2I#JLK;� VC �!� VC �$
POQ
��#'?�2)E

app/prim���
(app/prim 4g�@4C�) ��">�#��
���'?�2)E
	A� ��� 4 � ��">�#��
�� � appprim1-k � � 4 � �#">���%
�������'M
��#)@

�
VC hjiGk�� � appprim1-k � MC l�mQn;����l�o&o8��'M
��2)E

18

	A� �
MC l�mQn � � appprim2-k � VC hjiGk �#� l#oGo �#'D
��#)E

�
VC l�mQn;� � appprim2-k � � (� (x) M) [2��"�hqiGk8�#��hji&k/
�����l�o&o8��'M
��2)E
	A� ��� 4r�#"sY^�#��l#oGo t uwvPx2y z2{w| } ��hji&k t � �#yP�#{w|2
��#'?�2)�Y�

where
� "sY �#)EY�
E� � ">�2)E
W� � X��� VC l�mQn �

19

