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Abstract

Aspect-oriented software design will need to support languages with first-class and
higher-order procedures, such as Ruby, Perl, ML and Scheme. These language fea-
tures present both challenges and benefits for aspects. On the one hand, they force
the designer to carefully address issues of scope that do not arise in first-order lan-
guages. On the other hand, these distinctions of scope make it possible to define a
much richer variety of policies than first-order aspect languages permit.

In this paper, we describe the subtleties of pointcuts and advice for higher-order
languages, particularly Scheme. We then resolve these subtleties by alluding to tra-
ditional notions of scope. In particular, programmers can now define both dynamic
aspects traditional to aop and static aspects that can capture common security-
control paradigms. We provide an operational semantics, based on an extended
ceks machine, that gives a formal account of dynamic and static aspects. We im-
plement the language as an extension to Scheme. By exploiting two novel features
of our Scheme system—continuation marks and language-defining macros—the im-
plementation is lightweight and integrates well into the programmer’s toolkit.
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1 Introduction

Current programming languages offer many ways of organizing code into con-
ceptual blocks, whether through functions, objects, modules, or some other
mechanism. However, programmers often encounter features that do not corre-
spond well to these units of organization. Such features are said to “cross cut”
the design of a system, because the code that implements the feature appears
across many program units. In a procedural language, such a feature might be
implemented as pieces of disjoint procedures; in an object-oriented language,
the feature might span several methods or even objects. These cross-cutting
features inhibit software development in many ways. For one, it is difficult for
the programmer to reason about how the disparate pieces of the feature inter-
act. Also, they prevent modular assembly: the programmer cannot simply add
or delete these features from a program, since they are not separable units.

Recently, many researchers have proposed aspect-oriented software develop-
ment as a method for organizing cross-cutting features [2, 6, 20, 24, 29, 31, 34].
In particular, Kiczales et al. [24] have presented aspect-oriented programming
(aop); in this paradigm, the fragments of any given feature precipitate into
a separate component, called an aspect. In addition to containing the code
necessary for a feature, the aspect must indicate how this code should com-
bine with other modules to provide the desired behavior. Kiczales et al. also
implemented a practical aspect-oriented extension to Java, called AspectJ,
which allows the programmer to define aspects and integrates them into a
program [23].

Most current languages that support aop, such as AspectJ, have been built as
extensions to object-oriented and first-order procedural languages. The goal
of our work is to understand the relationship between aop and functional
programming. Two issues motivate our investigation of this topic. On the one
hand, there are many widely used functional languages that could benefit
from aop. In addition to conventional functional languages like ML, Scheme,
and Haskell, many new languages, in particular “scripting” languages such as
Perl and Ruby, now include anonymous and higher-order functions. As more
and more functional languages emerge, we need to understand the feasibility
and utility of aspect-oriented programming in these languages. On the other
hand, we can ask whether the greater abstractive power of functional pro-
gramming enhances aop. We might be able to simplify the specification of
aspects because the underlying language provides a stronger framework for
defining linguistic extensions. This foundation might enable us to apply para-
metricity to define more general aspects, and develop aspect combinators by
employing higher-order functions. The interaction between aop and functional
programming therefore merits careful investigation.
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The two main challenges to adding AspectJ-style aspects to a functional lan-
guage are the specification of aspects and the definition of the scope of an
aspect’s applicability. First, we need to decide how to specify aspects. Are
they new kinds of values? Do we need a sub-language for describing where
aspects apply? Second, we must address the issue of scope. Unlike first-order
languages, where all procedures and aspects are declared at the top level and
have very broad scope, most higher-order languages permit definitions to be
introduced at any point and have more limited scope. We must decide the
scope in which an aspect can affect program execution.

We will address these challenges by defining an aspect-oriented extension to a
functional language. Section 2 presents background on AspectJ, and puts forth
our aspect-oriented extension to Scheme. Section 3 gives examples of point-
cuts and advice in our language, and discusses the synergy between aop and
functional programming. In section 4, we describe in detail AspectScheme, a
lightweight implementation of aspects for Scheme, comment on enhancements
that are available, and examine potential efficiency concerns. Section 5 infor-
mally presents the semantics for our extension and connects the lightweight
implementation to this semantic description. Section 6 discusses related work,
and section 7 concludes.

2 Defining Pointcuts and Advice

In this section, we first review the AspectJ model of aspect-oriented program-
ming. We then describe our extension of a functional language with pointcuts
and advice.

2.1 Definitions in AspectJ

Since our model of aspect-oriented programming tries to mimic the style of
constructs in AspectJ, we will first discuss AspectJ’s definitions of pointcuts
and advice. An aspect relies on modifying a program’s behavior at some points
in its execution, including some points that the programmer perhaps did not
anticipate in advance.

These execution points are called join points, and they depend both on the
underlying language and the aspect-oriented extension to it. AspectJ defines a
set of possible join points for Java programs, including method calls, variable
accesses, exception throws, and object or class initialization. We will focus on
method-call join points because they suffice for demonstrating the utility of
AspectJ.

3



prettyPrintmakeBackup

readContents writeContents

openFile closeFile

parse

Fig. 1. Call graph for a edit-buffer library

Each join point presents a locus for a feature to affect a computation. The
effect might be as simple as writing some trace message to output or might
be as detailed as entirely supplanting the computation about to occur. The
specification of an aspect therefore has two attributes: the pointcut defines the
set of join points at which the aspect should apply, and the advice describes
what computation to perform at each applicable join point.

To illustrate these two concepts, consider a simple edit-buffer manipulation
library with the call graph shown in Figure 1.

The following AspectJ pointcut refers to any join point where the method
closeFile is about to be called from the body of method writeContents :

call(void closeFile()) && withincode(void writeContents())

AspectJ provides many means for defining pointcuts. Simple pointcuts, such
as those matching method calls and variable accesses, can combine via boolean
connectives to create complex pointcuts, as in the above example. In addition,
the construct cflow(p) matches any join point within the dynamic extent of a
join point matching p. For example, the following pointcut describes all calls
to closeFile occurring as part of a makeBackup call:

call(void closeFile()) && cflow(call(void makeBackup()))

An aspect’s advice specifies what computation to perform at those join points
denoted by the pointcut. The programmer writes advice as standard Java
code; for example, the following code prints a trace message before calling
openFile.

before() : call(bool openFile(String)) {
System.out.println("Calling openFile");

}

The programmer can define different kinds of advice depending on how execu-
tion should proceed with respect to a given join point. The three basic kinds of
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advice are before, after, and around. Before advice executes before control
enters a join point; after advice executes when control returns. 2 Around
advice replaces the current join point with a new expression to evaluate, but
can reinstate the displaced computation via the keyword proceed. For exam-
ple, the following around advice calls the intercepted method readContents ,
prints the returned value, and returns the value to the original context:

bool around() : call(bool readContents()) {
bool b = proceed();
System.out.println("readContents returned " + b);
return b;

}

An aspect combines pointcuts, a characterization of join points of concern,
and advice, describing the modified behavior at those points. The pointcut
and advice are not strictly independent entities in AspectJ. The pointcut may
pattern match against values in the join points it specifies; the advice can
then refer to these values in its code. Aspect definitions may use this facility
to capture the arguments to a method call; for example, we can ensure that
the application never opens a .java file.

bool around(String s) : call(bool openFile(String)) && args(s) {
if (s.endsWith(".java"))

return false;
else

return proceed(s);
}

Some relevant points to remember about Java and AspectJ are the following:

• AspectJ defines a special language for pointcuts; it includes call for match-
ing a method call, and cflow for matching join points in the dynamic con-
text.

• Aspects are not instantiated; they are not first-class objects.
• Methods are first-order.
• Aspects comprise multiple pointcut and advice pairs, with the scope of

application encompassing the entire program.

In the following section, we will see how our language differs on the above
points.

2 AspectJ supports three after advice patterns: after returning executes advice
only after a normal return; after throwing executes advice only when an excep-
tion occurs; and after executes advice after the join point regardless of normal or
exceptional return.
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2.2 Definitions in Higher-Order Languages

We support pointcuts and advice in the presence of higher-order functions
while retaining the essential features of AspectJ. We chose PLT Scheme [17, 19]
as the sandbox for our experimentation because its macro system provides
especially powerful support for linguistic extensions. We will rely on these for
developing a lightweight implementation of aspects in section 4.

Several design decisions confront us in the context of a functional language.
First, how should we specify aspects? Do we create a specialized language,
as in AspectJ? Do we make aspects first-class values? Second, since functions
may be nameless, how do we identify them? Third, what scope does an aspect
have; that is, when should a given aspect be in force?

We decided to make pointcuts and advice first-class values, thus enabling the
programmer to use the full power of higher-order functions when manipulat-
ing aspects. Specifically, we recognize procedure applications as join points.
But, each join point is either top-level (with empty context) or nested within
another active procedure application. Therefore, we represent a join point in
context as a list of procedures: the about-to-be-applied procedure is at the
head, and its context (another join point in context) as the tail. Then, we
define a pointcut as a predicate over a join point in context, and advice as a
join point (procedure) transformer.

Consider the pointcut we saw earlier, but in the context of a functional lan-
guage: the set of join points representing calls to close-file from write-contents .
In our model, a pointcut consumes a join point in context—a list of procedures
with the callee as the first element, the caller as the second, and so forth—and
returns true or false. Using eq? to compare functions for equality, we can define
the pointcut as follows:

(λ (jp∗)
(and (eq? close-file (first jp∗))

(not (empty? (rest jp∗)))
(eq? write-contents (second jp∗))))

Our primitive eq? deems two functions equal if they have the same source loca-
tion and close over identical environments. 3 We use eq? to solve the problem
of identifying functions in pointcuts; in the above code, for example, both the
variable close-file and the expression (first jp∗) evaluate to functions, which
can then be compared using eq? . We will discuss the semantics in detail in
section 5.

3 We compare environments “by reference”; for more details see section 5.3.
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(define ((call f ) jp∗)
(eq? f (first jp∗)))

(define ((within f ) jp∗)
(and (not (empty? (rest jp∗)))

(eq? f (first (rest jp∗)))))
(define ((cflow pc) jp∗)

(and (not (empty? jp∗))
(or (app/prim pc jp∗)

(app/prim (app/prim cflow pc) (rest jp∗)))))
(define ((cflowbelow pc) jp∗)

(and (not (empty? jp∗))
(app/prim (app/prim cflow pc) (rest jp∗))))

(define ((&& pc1 pc2) jp∗)
(and (app/prim pc1 jp∗)

(app/prim pc2 jp∗)))
(define ((|| pc1 pc2) jp∗)

(or (app/prim pc1 jp∗)
(app/prim pc2 jp∗)))

(define ((! pc) jp∗)
(not (app/prim pc jp∗)))

Fig. 2. Standard pointcut operators 4

The other pointcut we defined earlier denoted all calls to close-file that origi-
nated from make-backup. In our language, we define this pointcut as follows:

(λ (jp∗)
(and (eq? close-file (first jp∗))

(app/prim memq make-backup (rest jp∗))))

where memq checks, with eq? , whether an element is a member of a list.
The syntactic form app/prim performs a “primitive application”; that is, it

4 For brevity, we adopt MIT Scheme’s curried style of procedure definition [21].
The equivalent R5RS Scheme [22] definition for call is

(define call
(λ (f )

(λ (jp∗)
(eq? f (first jp∗)))))
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applies a function to an argument without examining whether aspects apply.
Informally, the pointcut says “return true if close-file is the first join point and
make-backup occurs in the rest of the join point list.”

Since pointcuts are first-class values, we can define standard pointcut operators
without any special language support, as shown in Figure 2. That figure also
shows the importance of app/prim. If we had defined cflow with (pc jp∗) in
place of the boxed expression in Figure 2, that application would itself invoke
aspect weaving, which in turn would evaluate the same cflow pointcut, leading
to an infinite loop.

Using these standard pointcuts, we can rewrite the two previous examples as
follows: 5

(&& (call close-file) (within write-contents))

(&& (call close-file) (cflow (call make-backup)))

Notice that these definitions closely resemble the original AspectJ code.

We now turn to the definition of advice. We will focus on around advice,
since it is strictly more general than both before and after. 6

We define advice as a procedure transformer: it consumes a procedure (the
current join point) and returns a new procedure to use in its place. This
formulation of advice is similar to the denotational semantics of advice given
by Wand et al. [37] for a first-order procedural language. 7

For example, the following advice prints a message before invoking the original
function jp on the original argument a:

(λ (jp)
(λ (a)

(printf "Calling open-file")
(app/prim jp a)))

5 Also for brevity, in the rest of the paper we omit app/prim when applying the
standard pointcut operators given in Figure 2.
6 In consideration of higher-order languages that support exceptions, we note that
the three variants of after are simple advice arrangements within an exception-
handling expression comprising the body of the around advice.
7 We chose not to provide the join point context to advice because it is immutable
for our purposes; any arguments and values have already affected that context. An
enhanced version of the language, discussed in section 4.4, supplies read-only access
to arguments of join points matched by a pointcut (just like target and args in
AspectJ).
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In this case, the use of app/prim ensures that applying jp to a will not invoke
any further aspects, which would potentially lead to an infinite loop. This use
corresponds to the AspectJ keyword proceed.

The other examples of advice are equally straightforward. To print the return
value of a function, we write:

(λ (jp)
(λ (a)

(let ([s (app/prim jp a)])
(printf "value is ˜a" s)
s)))

The first parameter, jp, is the function to transform; the second parameter,
a, is the argument passed to that function. When this advice captures the
function call, it prints the value, and returns it.

To test an argument before calling the function, we define the following advice:

(λ (jp)
(λ (a)

(if (<= a 0)
""

(app/prim jp a))))

This advice captures the original procedure, jp, and provides a replacement
examines the argument a, and decides whether to simply return the default
value, "", or to proceed. Here, we again employ app/prim to capture the
behavior of AspectJ’s proceed, which applies the original function without
performing any additional aspect weaving at the join point. Our model has
one limitation with respect to AspectJ: we can only match arguments from
the current join point, whereas AspectJ can match values anywhere in the
dynamic context.

Given these definitions of pointcuts and advice as first-class values, we need a
mechanism for installing aspects in the program. An aspect must be able to
refer to procedure definitions in its pointcuts, so it must be defined within the
scope of any procedures it advises. In a first-order procedural language, there
exists only one scope for procedures: the top-level scope. Thus, all aspects can
also be defined in a single top-level scope. In a functional language, however,
procedures may be defined at any point in the program. Therefore, we must
also allow an aspect to be defined at any program point, since it needs to be
in the scope of those procedures it advises. We accomplish this by adding to
our language a new expression for “around” aspects:
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(around pc advice
body)

Informally, this expression means “the aspect defined by pc and advice applies
in body”. For example, we could write:

(let ([open-file (λ (f ) . . . )]
[trace-advice (λ (jp)

(λ (a)
(printf "Calling open-file")
(app/prim jp a)))])

(around (call open-file) trace-advice
(list (open-file "vancouver")

(open-file "whistler"))))

While the around construct may ostensibly seem straightforward, we have
ignored a critical issue: the extent of an aspect’s jurisdiction. In defining
around, we need to be more specific about when the aspect will be active,
especially in the presence of higher-order functions. Fortunately, the problem
of reasoning about the extent is a familiar one: we encounter it in defining
whether variables should be statically or dynamically scoped. In a first-class
procedural value, statically-scoped variables get their values from the envi-
ronment of the procedure’s definition; dynamically-scoped variables get their
values from the environment of the procedure’s invocation.

We exploit this distinction for defining aspects also. A static aspect declara-
tion applies to an expression regardless of where it is used. If the body of the
declaration is a procedure, then the aspect applies in every use of that proce-
dure. In contrast, a dynamic aspect applies only in its dynamic extent, which
is the body of the aspect declaration. When the body finishes computing, the
aspect no longer applies. Any procedures defined in the body do not apply
the aspect outside that extent.

Concretely, consider the following use of the above trace-advice:

(around (call open-file) trace-advice
(open-file "vancouver"))

In this case, the advice is applied statically. Therefore, the aspect is in force
when the application of open-file to "vancouver" occurs in the text of the body.
As a result, the advice prints a message before executing open-file. However,
not all applications that occur while evaluating the body appear in the text
of the body. Consider the following:
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(let ([static-traced-open (around (call open-file) trace-advice
(λ (f ) (open-file f )))])

(static-traced-open "vancouver"))

The evaluation of this expression also prints a trace message, because the
application of open-file to f is in the text of around’s body, even though the
dynamic application occurs outside.

Conversely, an around aspect does not apply to applications that occur during
the evaluation of its body, but that were defined outside its scope. For example,
the following expression does not print a message:

(let ([apply-to-vancouver (λ (f ) (f "vancouver"))])
(around (call open-file) trace-advice

(apply-to-vancouver open-file)))

Since we may wish to define aspects that do apply in the above example,
we also allow dynamically scoped aspects. The expression (fluid-around pc
advice body) introduces a dynamically scoped aspect: it applies to any function
applications during the evaluation of body .

If we rewrite the previous example using fluid-around, its evaluation does
print a trace message:

(let ([apply-to-vancouver (λ (f ) (f "vancouver"))])
(fluid-around (call open-file) trace-advice

(apply-to-vancouver open-file)))

Although the application of open-file occurs outside the text of fluid-around,
it is within the dynamic extent of the fluid-around.

Next, consider the case where the body of a fluid-around contains an appli-
cation, but its evaluation does not occur during the evaluation of the body:

(let ([dynamic-traced-open (fluid-around (call open-file) trace-advice
(λ (f ) (open-file f )))])

(dynamic-traced-open "vancouver"))

The extent of the fluid-around terminates before the procedure is applied,
resulting in no console output.

To clarify, we consider one final example:
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(let ([traced-to-vancouver (around (call open-file) trace-advice
(λ (f ) (f "vancouver")))])

(traced-to-vancouver open-file))

In this case, the tracing message is emitted. Careful examination shows that
all calls to the procedure bound to open-file (also bound to f ) occur lexically
within the advice body.

Our aspects combine pointcuts, advice, and new around and fluid-around
expressions to provide an aop language similar to AspectJ. In particular, we
retain two key properties of aop, quantification and obliviousness [15, 16].
The first property, quantification, describes the range of entities that may
be affected by advice, and is embodied in our definition of a pointcut and
the clearly-delimited scoping provided by our around and fluid-around ex-
pressions. The second property, obliviousness, allows a programmer to alter
program behavior without changing the original code and without anticipating
any future changes. For example, with the following application

(define (backup-system)
(for-each make-backup

(list "vancouver" "whistler" "lillooet")))

we can ensure that tracing occurs by defining the following advice:

(fluid-around (&& (call close-file) (cflow (call make-backup)))
trace-advice

(backup-system))

That is, we are able to modify the behavior of a program without leaving any
hooks in it.

3 Programming with Aspects in Scheme

We have seen the language features necessary for adding pointcuts and advice
to a functional language. In this section, we present examples demonstrating
the interaction between functional programming and aspect-oriented program-
ming. First, we give a simple program that benefits from the use of both static
and dynamic aspects. Second, we show examples of how higher-order aspects
are both feasible and useful.
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(module os-api ;; names the module and
mzscheme ;; specifies its implementation language

(define (run-program p)
(if (no-run-permission? user)

(raise ’no-permission-exception)
(load&run p)))

(define (read-file f )
(if (no-read-permission? user)

(raise ’no-permission-exception)
(let ([p (open-file f )])

. . . )))

(define (write-file f )
(if (no-write-permission? user)

(raise ’no-permission-exception)
(let ([p (open-file f )])

. . . )))

(provide run-program read-file write-file)) ;; export functions

Fig. 3. An Operating System api

3.1 Static and Dynamic Aspects

To study the utility of aspects in a functional language, we will look at an
example of how we can implement a security model using a combination of
static and dynamic aspects.

Consider this scenario: we want to provide a simple operating system api to
an untrusted client program. This api contains three operations: run-program,
read-file and write-file. The original code is organized by operation, with se-
curity checks scattered throughout, as seen in Figure 3.

First, we would like to separate core functionality from permissions checking.
The core functionality is:

(module os-api aspect-scheme
(define (run-program p)

(load&run p))

(define (read-file f )
(let ([p (open-file f )])

. . . ))
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(define (write-file f )
(let ([p (open-file f )])

. . . ))

We recognize the situations where permissions need to be checked: running a
program within run-program and opening a file within read-file or write-file.
The join points matching these situations are easily written as the following
pointcuts:

(define run-pc (&& (call load&run) (within run-program)))
(define read-pc (&& (call open-file) (within read-file)))
(define write-pc (&& (call open-file) (within write-file)))

Permissions checking is clear: whenever a join point is matched, apply the
corresponding permissions check and then either raise an exception or allow
the api call to proceed. We write a general checking advice procedure, and
specialize it for each permissions check:

(define (((make-perm-check-adv perm-check? ) jp) a)
(if (perm-check? user)

(raise ’no-permission-exception)
(app/prim jp a)))

(define run-adv (make-perm-check-adv no-run-permission? ))
(define read-adv (make-perm-check-adv no-read-permission? ))
(define write-adv (make-perm-check-adv no-write-permission? ))

Finally, we apply the aspects to the api procedures and export the resulting
protected procedures:

(define secure-run (around run-pc run-adv (λ (p) (run-program p))))
(define secure-read (around read-pc read-adv (λ (f ) (read-file f ))))
(define secure-write (around write-pc write-adv (λ (f ) (write-file f ))))

(provide (rename secure-run run-program)
(rename secure-read read-file)
(rename secure-write write-file)))

We have clearly separated the security concerns from the original api, enabling
the developer to focus on each part separately. Since we use static aspects to
encapsulate the permissions feature, the corresponding permission-checking
aspect will be applied when evaluating the bodies of the function, wherever
that may occur. Thus, we can safely export these three functions from our api
module.
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Second, we would like to add an extra security measure to the run-program
function. Suppose the argument p is some client-supplied program, e.g. a
servlet, and we wish to prohibit its access to certain resources, say opening a
network socket. Ordinarily, this would entail providing a distinct open-socket
routine in our api, or altering that routine’s code to recognize illegal uses.
But, we can employ a dynamic aspect to ensure that the client program does
not open any network connections. This aspect will dictate that any call to
open-socket that occurs in its dynamic extent of a call to load&run within run-
program should fail by raising an exception. The following code implements
this behavior by adding another advice to the run-pc pointcut that installs
the dynamic aspect that traps calls to open-socket .

(define open-socket-pc (call open-socket))

(define ((no-socket-adv jp) a) (raise ’no-socket-allowed))

(define ((restrict-run-adv jp) p)
(fluid-around open-socket-pc no-socket-adv

(app/prim jp p)))

(define more-secure-run (around run-pc restrict-run-adv
(λ (p) (secure-run p))))

(provide (rename more-secure-run run-program)
. . . ))

This security example illustrates the utility of both static and dynamic as-
pects. Static aspects allow us to encapsulate cross-cutting features of library
functions, and export the functions so that they use the aspect when applied.
Dynamic aspects give us control of whatever computations occur within some
dynamic extent: in this case, we could trap certain function calls in the execu-
tion of an untrusted client’s program. This leads to some initial straightforward
design rules for determining aspect scope:

• Statically scoped aspects are appropriate for altering the behavior of join
points which are lexically visible within the advice body, including those
frozen within unapplied lambdas which escape from the advice body.

• Dynamic aspect scoping is applicable when the join points of interest can
only be characterized within the dynamic control flow of the advice body
(for example, the source is unavailable, or is lexically external) or if the
modified behavior should not be permanently engrained in the unapplied
procedures.

Overall, aspect scope decisions are largely determined by the existing program
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modularity: are the join points of interest a static part of the advice body or
dynamically present in the advice body? Our aspect that restricts resource
access required both kinds of scoping. A dynamic aspect was required to ensure
all open-socket calls in the control flow of load&run were trapped, including
those found in load&run and p. A static aspect was employed to identify
the calls of load&run that needed the dynamic aspect to enforce resource
restrictions.

3.2 An Algebraic View of Aspects

In this section, we study examples of how first-class pointcuts and advice
allow greater reuse. First, we examine the difference between pointcuts in
our language, and those of AspectJ. In our formulation, pointcuts are first-
class values: they are predicates over a list of join points. Like all values in
a functional language, they can be passed to and returned from functions.
In AspectJ, however, the programmer cannot abstract over pointcuts; Kicza-
les et al. explicitly state: “Pointcuts are not higher order, nor are pointcut
designators parametric” [23]. Are there any advantages to having first-class
pointcuts?

Consider a pointcut that describes the following join point: any call to the
function func1 where control flowed through functions f , g , and h in that
order. This situation might arise when the programmer registers func1 as a
callback function, and she wishes to examine those calls to it that originated
from control flow sequence f , g , h in the library. We can write this pointcut
as follows:

(&& (call func1)
(cflow (&& (call f )

(cflow (&& (call g)
(cflow (call h)))))))

Now let’s describe the same scenario, but for the function func2 instead of
func1. In AspectJ, we could avoid error-prone code duplication by declar-
ing an abstract aspect and a named pointcut to get an extensible pointcut.
But, this requires either up-front planning, or re-implementation of the origi-
nal aspect. In contrast to the lightweight refactoring available to higher-order
constructs, this is a heavyweight solution that can bring up cumbersome inher-
itance issues. As expected with higher-order languages, we can parameterize
the pointcut over the function:
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(define (thru-fgh a-function)
(&& (call a-function)

(cflow (&& (call f )
(cflow (&& (call g)

(cflow (call h))))))))

Thus thru-fgh consumes a function and returns a pointcut. We can use thru-fgh
to create a pointcut for both func1 and func2, or indeed for any function:

(thru-fgh func1)
(thru-fgh func2)

By making pointcuts first-class entities in a functional language, we automat-
ically get the greater abstractive capability afforded by parameterization.

We can take this abstraction one level further. In the example above, we
used a chain of cflows to represent a path of control flow. We will likely use
this control flow pattern beyond just the functions f , g , and h, so we would
would like to define a more general pointcut operator: one that takes a list
of pointcuts and produces a new pointcut representing any join point where
control flowed successively through each pointcut in the list. We’ll call this
operator cflow∗. In our language, we can define cflow∗ as a recursive function
in terms of cflow : 8

(define (cflow∗ lis)
(if (empty? lis)

(λ (jp∗) true)
(cflow (&& (first lis) (app/prim cflow∗ (rest lis))))))

We can rewrite our above example, thru-fgh, using cflow∗ as follows:

(define (thru-fgh a-function)
(&& (call a-function)

(app/prim cflow∗ (app/prim list (call f ) (call g) (call h)))))

The operator cflow∗ is a higher-order pointcut: it consumes a list of pointcuts
and produces a new one. Our higher-order pointcuts allow us to, for instance,
design sophisticated security mechanisms that are difficult for AspectJ to ex-
press. For example, we can prevent open-file from executing except within an
unbroken sequence of trusted procedures ending with a privileged procedure.

8 Recall that we omit app/prim when applying the standard pointcuts given in
Figure 2.
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(define protected-open-file
(around (&& (call open-file)

(not (app/prim until trusted? privileged? )))
(raise ’privilege-exception)
(λ (f ) (open-file f ))))

This definition depends on the recursively-defined pointcut until :

(define (((until pc1 pc2) jp∗)
(and (not (empty? jp∗))

(or (app/prim pc2 jp∗)
(and (pc1 jp∗)

(app/prim (app/prim until pc1 pc2)
(rest jp∗)))))))

Again, the power to define such operators comes for free from defining point-
cuts as first-class entities in a functional language. We believe this abstractive
power represents a significant improvement over the capabilities of AspectJ.

Not only can we define higher-order pointcuts, but we can define higher-order
advice. We illustrate one scenario where this ability is useful. Consider the
circumstance where we have two aspects: one that logs calls to a function, and
one that filters calls to a function based on its argument. The advice for the
logging aspect prints out a message before and after the join point:

(define ((logging-adv jp) a)
(printf "entering fn")
(let ([v (app/prim jp a)])

(printf "exiting fn")
v))

The filtering aspect may or may not enter the join point, depending on the
value of the argument; its advice generator, abstracted over the predicate p? ,
is defined as follows:

(define (((make-filtering-adv p? ) jp) a)
(if (not (p? a))

(app/prim jp a)))

(define filter-zero-adv (make-filtering-adv zero? ))

What happens if logging-adv and filter-zero-adv advice both apply to the same
join point? There are two possibilities:

(1) The filter-zero advice executes first, and its app/prim of jp invokes the
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logging advice. When a is zero, it does not call the logging advice (and
thus the original function), so nothing is printed.

(2) The logging advice executes first, and its app/prim of jp invokes the
filter-zero advice. When a is zero, the logging advice still prints out its
messages, even though the pruning advice does not call the original func-
tion.

Given these two choices, we probably desire the behavior of the first. How
can we ensure this behavior? In AspectJ, the order of aspect weaving depends
on the order of their definitions in the source file (though we could use the
declare precedence construct to specify order more precisely). A safer ap-
proach would be to combine these two pieces of advice ourselves, so that we
have absolute control over their order and do not have to rely on the implicit
ordering of the system. Thus we are able write a function that consumes these
two advice functions and returns their combination:

(define (((sequence-advice adv 1 adv 2) jp) a)
((app/prim adv 1 (app/prim adv 2 jp)) a))

This function sequence-advice is higher-order advice: it consumes two pieces
of advice and produces new advice. For more complex aspects, we would need
more detailed ways of combining them. In AspectJ, we cannot define new com-
binators without modifying the internals of aspect weaving. In our language,
we have complete control over how to combine multiple aspects that apply to
the same join point.

In summary, extending aspects to higher-order languages provides a number of
benefits. With higher-order pointcuts, we can abstract and parameterize the
description of join points of interest more easily. With higher-order advice,
we can provide greater reuse of and finer control over behavioral changes
introduced by the aspects. Now we turn our attention to how to implement
these facilities.

4 Implementation

We demonstrated that we can support several key elements of aspect-oriented
programming in a functional language by adding three language constructs—
around, fluid-around, and app/prim. In this section, we will present these
constructs as syntactic extensions to the Scheme language by employing the
Scheme macro system along with the PLT Scheme facilities for creating new
languages. We will also describe the continuation marks facility we use to
define these constructs, and present its role in their definition.
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4.1 Background on PLT Scheme

In Scheme, we can easily define language extensions using its macro system.
Scheme macros are effectively functions that rewrite syntax trees; they are
more powerful than lexical macros, such as those provided by the C prepro-
cessor, which operate only on strings. Hygienic macros ensure that the syntax
tree resulting from a transformation does not accidentally capture any vari-
ables from the surrounding context [25, 26]. We will use the syntax-case
form [13] in PLT Scheme, which allows pattern-matching [27] and creates hy-
gienic macros.

Macros themselves are not sufficient for defining our aspect-oriented exten-
sions. As we saw earlier, we must redefine the behavior of function application
so that it performs aspect weaving; thus, we are really creating a new language,
not merely an extension to Scheme. Fortunately, PLT Scheme’s module sys-
tem provides an easy way to create a new language: the programmer defines
a module that exports the syntax definitions for every construct in the lan-
guage [18]. Our implementation exports the default language constructs from
Scheme with a few changes. We define and export the new syntactic forms
around and fluid-around. We also define app/weave, the form of function
application that weaves aspects, and export it as the default application. We
then export Scheme’s default function application as app/prim.

In order to implement aspect-oriented programming capabilities, we need one
additional feature of PLT Scheme: continuation marks. Clements, Flatt, and
Felleisen introduced continuation marks as a mechanism for implementing an
algebraic stepper [5]. The stepper inserts a break point between each evalua-
tion step to show the execution of a program. At each break point, the stepper
prints representations of both the current value and the current continuation.
Clements et al.’s insight was to mark every computation point with a repre-
sentation of its action; the stepper can then reconstruct the structure of the
continuation by examining these marks at break points.

The mechanism of continuation marks introduces two new language primitives.
Intuitively, with-continuation-mark (w-c-m) adds a mark, and current-
continuation-marks (c-c-m) examines the marks. The expression (w-c-m
tag M1 M2) first evaluates M1, then M2, and returns the value of M2. The
expression (c-c-m tag) looks for instances of (w-c-m tag V . . .) in the current
continuation, and returns a list of all such V ’s. For example:
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(define (fact n)
(w-c-m ’fact-arg n

(if (zero? n)
(begin

(display (c-c-m ’fact-arg))
1)

(∗ n (fact (sub1 n))))))

(fact 4)

prints (0 1 2 3 4) because the non-tail calls to fact extend the continuation to
ensure the multiplication happens. These extensions provide separate places
to apply the mark for each n, so all marks are found.

For implementing a stepper, it was critical that continuation marks preserve
tail-call behavior. The semantics of continuation marks dictates that when
two marks with the same tag are written on the same stack frame, the newer
one overwrites the older one. Thus, the accumulator equivalent of the factorial
implementation above:

(define (facta n a)
(w-c-m ’facta-arg n

(if (zero? n)
(begin

(display (c-c-m ’facta-arg))
a)

(facta (sub1 n) (∗ n a)))))

(facta 4 1)

prints a list containing just the number (0). To see this, recall that tail calls
do not extend the continuation. That means the same continuation is always
present at the w-c-m and the continuation mark applied overwrites the pre-
vious mark.

Unfortunately, we do not want this overwriting behavior in our uses of con-
tinuation marks. We can ensure that two marks never appear consecutively
by inserting an application of the identity function before each w-c-m expres-
sion. For example, we can transform the accumulator-style definition of facta
so that no marks disappear:
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(define (facta n a)

( (λ (x ) x )

(w-c-m ’fact-arg n
(if (zero? n)

(begin
(display (c-c-m ’fact-arg))
a)

(facta (sub1 n) (∗ n a))))))

(facta 4 1)

This expression prints the list (0 1 2 3 4) as desired.

Since our uses of continuation marks always want this behavior, our code
redefines w-c-m to automatically insert an application of (λ (x ) x ) as in the
above example. This has the effect of extending the continuation with another
frame which simply returns the value it awaits. All instances of w-c-m in the
remainder of this paper will assume this redefinition.

4.2 Implementation of Dynamic Aspects

How can we use continuation marks to define our aspect-oriented extension
to Scheme? There is one obvious parallel between aspects and continuation
marks: the dynamic nature of join points. Recall that the cflow operator allows
the programmer to match any join point in the dynamic context. When we
enter a new join point, we add a continuation mark containing the data for
the join point—in our model, the value of the function. In order to evaluate
pointcuts, we need the list of all active join points, which we retrieve by
examining continuation marks. Both of these events occur during function
application. Figure 4 shows the code for app/weave. The expression (w-c-m
’joinpoint fun-val . . .) records a join point, and (c-c-m ’joinpoint) retrieves the
current list of join points.

We also need some way to mimic the aspect environment defined in our se-
mantics. The environment contained both static and dynamic aspects; for
now, we will focus on the dynamic aspects. Continuation marks are in fact
an implementation of dynamic environments: w-c-m extends the dynamic
environment with a new value, and c-c-m returns all values. When we en-
counter a dynamic aspect, we add it to the dynamic environment with the
expression (w-c-m ’dynamic-aspect aspect . . .). When we need to weave as-
pects during function application, we retrieve the list of all dynamic aspects
via (c-c-m ’dynamic-aspect). The definitions of fluid-around and app/weave
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(module aspect-scheme mzscheme
(require (only (lib "list.ss") foldr first rest empty? ))

(define-struct aspect (pc adv))

(define-syntax (app/weave stx )
(syntax-case stx ()

[( f a . . . ) (syntax (app/weave/rt f a . . . ))]))

(define (app/weave/rt fun-val . arg-vals)
(if (primitive? fun-val)

(apply fun-val arg-vals)
(w-c-m ’joinpoint fun-val

(apply (weave fun-val (c-c-m ’joinpoint) (current-aspects))
arg-vals))))

(define (weave fun-val jp∗ aspects)
(foldr (λ (a r)

(if ((aspect-pc a) jp∗)
((aspect-adv a) r)
r))

fun-val
aspects))

(define-syntax (fluid-around stx )
(syntax-case stx ()

[( pc adv body)
(syntax (w-c-m ’dynamic-aspect (make-aspect pc adv) body))]))

(define (current-dynamic-aspects)
(c-c-m ’dynamic-aspect))

(define current-aspects current-dynamic-aspects)

(provide (all-from-except mzscheme #%app)
(rename app/weave #%app)
(rename #%app app/prim)
fluid-around))

Fig. 4. Extending Scheme with dynamically-scoped aspects

demonstrate this use of continuation marks.

We now have the two pieces of information we need to weave dynamic aspects:
the list of current join points and the active dynamic aspects. At function
application, we iterate over each aspect. If the aspect’s pointcut returns true
when applied to the join point list, we apply the aspect’s advice to the function.
The definition of weave demonstrates the details of this algorithm.

23



4.3 Implementation of Static Aspects

Although continuation marks help in implementing dynamic aspects, they do
not obviously help in implementing static aspects. Recall two examples from
section 2.2 which distinguish dynamically- and statically-scoped aspects:

(let ([dynamic-traced-open (fluid-around (call open-file) trace-advice
(λ (f ) (open-file f )))])

(dynamic-traced-open "vancouver"))

(let ([static-traced-open (around (call open-file) trace-advice
(λ (f ) (open-file f )))])

(static-traced-open "vancouver"))

In the first example, the dynamic aspect is not in scope when open-file is
applied to "vancouver". Our macro ensures this behavior: the continuation
mark corresponding to the fluid-around disappears upon evaluation of (λ
(f ) (open-file f )), before the application of open-file. But, the second example
declares a static aspect which is in scope for the body of (λ (f ) (open-file f )).

In order to achieve the correct semantics for around, we need to transform
each lambda expression in the program so that it closes over the aspects at
its definition site, and reinstates these aspects during the execution of its
body. We choose to write the current static aspects into the value of the
continuation mark keyed by ’static-aspects, and provide current-static-aspects
to access them. Then, a lambda expression resembling:

(λ (x ) . . . )

is transformed into

(let ([aspects (current-static-aspects)])
(λ (x )

(w-c-m ’static-aspects aspects
. . . )))

We provide this transformation of lambda as our lambda/static macro.

As we are storing the entire list of static aspects in the most-recent ’static-
aspects continuation mark, we need current-static-aspects to return only that
most-recent mark’s content. Note that our definition of current-static-aspects
does this.
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(define (current-static-aspects)
(let ([aspectss (c-c-m ’static-aspects)])

(if (empty? aspectss)
’()
(first aspectss))))

Now we turn to the problem of constructing the list of current static aspects
that corresponds to lexical scoping. Consider the following program structure,
involving nested static aspects:

(around pc1 adv 1

. . . ; section 1
(around pc2 adv 2

. . . ); section 2
. . . ); section 3

Aspect 〈Aspect pc1, adv2〉 should be available for any closures created in all
three elliptic sections, but 〈Aspect pc2, adv2〉 applies only in section two. There-
fore, we define around as a macro that obtains the current static aspects and
extends them by adding a new continuation mark keyed by ’static-aspects. The
transformed example becomes:

(w-c-m ’static-aspects
(cons (make-aspect pc1 adv 1)

(current-static-aspects))
. . . ; section one
(w-c-m ’static-aspects

(cons (make-aspect pc2 adv 2)
(current-static-aspects))

. . . ); section two
. . . ); section three

Our around macro performs this transformation. It is instructive to note that
for section three of the example, the continuation mark labeled ’static-aspects
will have reverted back to the original mark containing only 〈Aspect pc1, adv1〉.
In this way, the lexical scoping of the program is maintained in the static
aspects.

Figure 5 contains our implementation of static aspects. It defines the macros
lambda/static and around which implement the transformations described
above. Notice that we also update the definition of current-aspects , so that it
considers both static and dynamic aspects. It also exports lambda/static as
the default lambda.
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(module aspect-scheme mzscheme
;; previous dynamic aspects part elided

;; statically-scoped aspects
(define-syntax (around stx)

(syntax-case stx ()
[( pc adv body)
(syntax
(w-c-m ’static-aspects

(cons (make-aspect pc adv) (current-static-aspects))
body))]))

(define-syntax (lambda/static stx)
(syntax-case stx ()

[( params body . . . )
(syntax
(let ([aspects (current-static-aspects)])

(λ params
(w-c-m ’static-aspects aspects

(begin body . . . )))))]))

(define (current-static-aspects)
(let ([aspectss (c-c-m ’static-aspects)])

(if (empty? aspectss)
’()
(first aspectss))))

;; redefine to incorporate both kinds
(define (current-aspects)

(append (current-dynamic-aspects)
(current-static-aspects)))

(provide (all-from-except mzscheme #%app lambda)
;;previous dynamic aspect part elided
(rename lambda/static lambda)
around))

Fig. 5. Extending Scheme with statically-scoped aspects

The definitions given in Figures 4 and 5 provide an implementation of aspect-
scheme for statically- and dynamically-scoped aspects, with base language
PLT Scheme. They are executable PLT Scheme code that correctly interprets
the examples given in this paper. This code is available for download from the
PLaneT package repository as AspectScheme 1.1 [11]. 9

9 AspectScheme programmers must preface their code with the following line:

(require (planet "aspect-scheme.ss" ("cdutchyn" "aspect-scheme.plt" 1 1)))

This automatically downloads, installs, and activates the language module.
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4.4 Enhancements

Our implementation is Spartan in comparison with other aop languages such
as AspectJ. As shown above, it offers the necessary and sufficient features to
provide dynamic aspect-oriented programming. There is also an enhanced ver-
sion (AspectScheme 2.0 [12]) that mitigates several pedagogically-motivated
design decisions. It

(1) extends pointcuts to access arguments other than the top-level join point:
the idea is to incorporate arguments into the continuation mark. This
removes the limitation described on page 9.

(2) distinguishes procedure call and execution join points, which becomes
significant given access to arguments other than the top-level join point.
Whereas call join points reflect procedure applications that have not yet
started, execution join points (are presumed to) have begun. Hence, pro-
ceeding on call join points permits substitution of new argument values;
proceeding on execution join points does not. Subtleties such as how ad-
vice can yield multiple active call join points arise.

(3) provides for top-level-scoped aspects; that is, advice that applies to all
matching join points following injection into the repl.

(4) recognizes advice-execution join points—places where advice has been
activated by app/weave/rt instead of being manually applied to the origi-
nal procedure to yield a new definition, as described in Costanza’s non-
oblivious dynamically-scoped functions [7].

This enhanced version, AspectScheme 2.0 is available from the PLaneT Pack-
age Repository also. 10

4.5 Efficiency

Because we (intentionally) destroy tail-call optimization, our approach suffers
from a run-time penalty. Given that cflow and cflowbelow pointcuts can dis-
criminate the number and order of calls, it is straightforward to see that this
cannot be improved to full tail-call optimization. In languages like AspectJ
(sans args except for the top-most join point), the entire range of interesting
continuation-mark sequences is known in advance. In that case, a regular au-
tomaton can recognize the join points [33], and the actual continuation marks
need only denote the current automaton state. Thus, phased implementations

10 To program in AspectScheme 2.0, use the prelude

(require (planet "aspect-scheme2.ss" ("cdutchyn" "aspect-scheme.plt" 2 0)))

to automatically download, install, and activate the enhanced language.
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like AspectJ can restore tail-recursive optimizations for procedure calls which
do not alter the automaton state; the process is similar to that described by
Clemens and Felleisen [3, 4].

AspectScheme does not insist that aspects be predefined, so this technique
has limited applicability. Consider the following example:

(let ([f (λ (g)
(let ([h (λ () 1)])

(around (&& (call h)
(cflow (call g)))

(λ (jp)
(λ ()

(+ 1 (jp))))
(h))))])

(f f ))

The application of f to itself makes the cflow (call g) pointcut true. Therefore,
the aspect within f should be applied, requiring us to remember the calling
context even in the absence of any aspects at the time of the call to f . As-
pectScheme can’t know what calling context must be maintained in advance,
so we must maintain the entire calling context.

In AspectScheme 2, because we support capturing arguments from cflow join
points, a regular automaton no longer suffices: a push-down automaton is
required. Now, there clearly is context building up and tail-call optimization
is manifestly impossible in the general case. It is interesting to consider the
cases where tail-call optimization remains possible.

Our implementation differs from other aspect languages, such as AspectJ, in
another way. We present a dynamic weaving approach, but others resemble a
code generation technique. This distinction is an artifact of AspectJ’s imple-
mentation because the host language, Java, makes this straightforward and
efficient. AspectJ’s semantic description is dynamic as well [30]. Java divides
execution into two separate phases: class elaboration and then expression eval-
uation. 11 Further, Java offers a flat scoping model and first-order definitions.
Scheme offers richer lexical scoping, higher-order definitions, and explicitly
interleaved phases (macro expansion, then expression evaluation) making pro-
gram analysis of aspect code challenging.

11 Dynamic class loading and load-time weaving may temporally interleave the
phases, but they remain logically distinct.
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5 Semantics

In this section we lay out the semantics for a functional language extended with
support for pointcuts and advice. We first give a primer on the machine model
which we use to define our operational semantics. Subsequent sections then
explain some key rules, including those for declaring aspects, testing function
equality, and applying functions. Last, we informally sketch the connection
between the implementation and the operational semantics.

5.1 Background on the ceks machine

We use a variation on the ceks machine [14] as the model for our semantics.

We have three reasons for using the ceks machine in defining our semantics.
First, recall that pointcuts can require knowledge of the control path that led
to the current point in the computation; thus, we need a concrete representa-
tion of the current continuation (the stack). Second, since the machine uses an
environment to maintain variables, we can easily add a second environment
to keep track of aspects in scope. Third, programmers often use side-effects in
writing useful aspects (e.g. logging, tracing, error reporting); hence, we include
a model that contains an abstract store.

The ceks model defines program behavior by a transition relation from one
program state to the next. To represent the state of a program, we rely on the
ability to break any expression into two pieces: the sub-expression to evaluate
next, and the “rest” of the computation. We can visualize this distinction by
drawing a box around the first piece; for example:

(+ 1 (− (+ 2 3) (∗ y 4)))

We call the expression inside the box the control string ; the context outside
of it is the current continuation. In this example, the continuation says what
to do with the result of (+ 2 3):

(1) next, evaluate (∗ y 4) and subtract it from the result
(2) then, add the above result to 1
(3) finally, terminate with the above result as the value of the entire compu-

tation

We can represent this continuation as a tagged list:
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〈sub-left-k (∗ y 4),

〈add-right-k 1,

mt-k〉〉

The ceks machine adds two more pieces of information to the state of a
computation. First, it pairs each control string with an environment that maps
variable names to locations in an abstract store. Second, each state has an
abstract store that maps locations to value-environment pairs. Formally, we
represent the state of a computation with a triple of the following form:

(1) The control string (C) and its environment (E).
(2) The current continuation (K).
(3) The current store (S).

For example, if the above expression was inside a context where y was set to
5, the triple would be:

〈 〈(+ 2 3), {y 7→ `17}〉,
〈sub-left-k (∗ y 4), 〈add-right-k 1, mt-k〉〉,
{`17 7→ 5}〉

In order to use a ceks machine, we must describe how to initiate a compu-
tation, and how recognize when it has terminated. Given a program, a closed
top-level expression M , the machine is initialized with the triple:

〈〈M, E0〉, mt-k, S0〉

where E0 ≡ x 7→ error is the initial environment that binds no variables,
and S0 ≡ ` 7→ error is the initial store binding no locations. The machine
steps through transitions until a terminal state 〈〈V,E〉, mt-k, S〉 is reached,
whereupon V is the final value of the program.

During the execution of the ceks machine, various primitive operations must
be performed. In our case, we provide a minimal sufficient set for manipulating
the list values we support: empty? , cons , first , and rest . The transition rules

〈〈(o M1 . . . Mn), E〉, K, S〉
⇒prim 〈〈M1, E〉, 〈op-k o, 〈〉, 〈〈M2, E〉, . . . , 〈Mn, E〉〉, K〉, S〉

〈VCm, 〈op-k o, 〈VCm−1, . . . ,VC1〉, 〈MCm+1, . . . ,MCn〉, K〉, S〉
⇒prim 〈MCm+1, 〈op-k o, 〈VCm, . . . ,VC1〉, 〈MCm+2, . . . ,MCn〉, K〉, S〉

〈VCn, 〈op-k o, 〈VCn−1, . . . ,VC1〉, 〈〉, K〉, S〉 ⇒prim 〈δ(o,VC1, . . . ,VCn), K, S〉

where VC = 〈V,E〉 represents a closure of a value over an environment,
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illustrate that operands are evaluated left-to-right. The δ function receives the
resulting value closures, and implements the actual primitives. Specifically, we
define δ as

δ(empty? ,VC ) = 〈true, E0〉 if VC = 〈empty, E〉
= 〈false, E0〉 otherwise

δ(cons ,VC1,VC2) = 〈(cons VC1 VC2), E0〉

δ(first , 〈(cons VC1 VC2), E〉) =VC1

δ(rest , 〈(cons VC1 VC2), E〉) =VC2

5.2 Declaring aspects

To declare aspects, we added the around and fluid-around expressions to a
base functional language:

(around pc adv body)

(fluid-around pc adv body)

We will first describe the semantics of around; the semantics of fluid-around
is nearly identical.

When the programmer declares an aspect via around, the machine may later
access the aspect during function application. This situation resembles the
use of variables: the programmer declares them with lambda or let, and
later accesses them by variable references. Drawing on this analogy, we add
a second environment to our machine—one for storing aspects. The reduction
rules for our model will be similar to those for the ceks machine, except that
closures now include both a variable environment and an aspect environment.
The template for a reduction rule now includes aspect environments, Ai, in
closures:

〈〈C1, E1, A1〉, K1, S1〉 ⇒ 〈〈C2, E2, A2〉, K2, S2〉

where 〈C,E,A〉 is either a value closure (C = V ) , abbreviated as V C, or an
expression closure (C = M) , abbreviated as MC, and A0 ≡ ∅ provides an
initial, empty aspect environment.
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The evaluation of around has three reduction rules. The first rule moves
evaluation to the pointcut, Mpc, while remembering that the declaration was
for a static aspect:

〈〈(around Mpc Madv M), E, A〉, K, S〉
⇒around 〈〈Mpc, E, A〉, 〈around1-k static, 〈Madv, E, A〉, 〈M, E, A〉, K〉, S〉

The second rule says that once the pointcut computes to a value (VCpc),
evaluate the advice (MCadv) next:

〈VCpc, 〈around1-k scope,MCadv,MC , K〉, S〉
⇒around 〈MCadv, 〈around2-k scope,VCpc,MC , K〉, S〉

The third rule applies after both the pointcut and advice become values. The
rule moves evaluation to the body of the around expression, but with an
extended aspect environment. We add the triple 〈scope,VCpc,VCadv〉 to the
aspect environment; that is, the scope tag (static for around), the pointcut
value (VCpc), and the advice value (VCadv):

〈VCadv, 〈around2-k scope,VCpc, 〈M, E, A〉, K〉, S〉
⇒around 〈〈M, E, A ∪ {〈scope,VCpc,VCadv〉}〉, K, S〉

To support fluid-around, we simply add a rule similar to the first one for
around, except that its scope tag is dynamic:

〈〈(fluid-around Mpc Madv M), E, A〉, K, S〉
⇒around 〈〈Mpc, E, A〉, 〈around1-k dynamic, 〈Madv, E, A〉, 〈M, E, A〉, K〉, S〉

In short, the semantics of aspect declaration say to evaluate the pointcut and
advice, then add them (along with the appropriate scope tag) to the aspect
environment when evaluating the body.

5.3 Function equality

Next we address the issue of function identity in a higher-order language.
Recall that the pointcut of an aspect can refer to one or more procedures; for
example, the pointcut (call open-file) denotes join points representing calls to
the function open-file. Thus, at each function application, we must determine
whether the function being applied is open-file. In a language like Java, this
would be an easy test—we just use string equality to compare the name open-
file with the name of the method being invoked. In a functional language,
however, two problems arise. First, the term in the function position need
not be a variable name—it may be an arbitrary expression that evaluates to
a function. Second, even if the function is the variable open-file, we cannot
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tell by its name whether this was the open-file in scope when the aspect was
defined. Consider the following expression:

(let ([open-file (λ (f ) . . . )])
(around (call open-file) trace-advice

(let ([open-file (λ (f ) . . . )])
(open-file "vancouver"))))

In this example, should the call to open-file invoke the aspect? The answer is
no—because the open-file in the pointcut really refers to the outer open-file,
while the function application refers to the inner open-file.

To cope with this challenge of function equality, we will borrow the definition of
equality used in Scheme. The predicate eq? in Scheme can be used to compare
functions. One interpretation of function eq? -ness is:

Two function closures are equal if they have the same textual source location
and their environments are identical.

To capture this meaning, we assume that each lambda expression in the
source program is labeled with a unique location identifier and each environ-
ment is labeled with a unique store location when it is constructed. In order
to do this, we must extend our definition of environment to include a store
location tag, E :: 〈`, x 7→ `〉 with E0 = 〈`0, x 7→ error〉 , and store to in-
clude the set of locations allocated to environments, S :: 〈{`}, ` 7→ VC 〉 with
S0 = 〈{`0}, ` 7→ error〉 where `0 is initially allocated to E0. This construction
is similar to that given for R5RS Scheme [22] in order to meet a minimal
specification for eq? .

Two function closures are then eq? if and only if both location identifiers are
the same and both environment locations are equal. The following case in the
δ function illustrates this definition:

δ(eq? , 〈(λ (x) M)t, 〈`, e〉, A〉, 〈(λ (x′) M ′)t′ , 〈`′, e′〉, A′〉)
= 〈true, E0, A0〉 if t = t′ and ` = `′

= 〈false, E0, A0〉 otherwise

This definition does not identify all functions that are observationally equal,
but it is a conservative approximation of that relation that is both useful and
can be computed in constant time.
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5.4 Primitive function application

Our language has two constructs for function application: the default one,
which injects aspects into the computation, and a “primitive” application
(named app/prim), which does not observe aspects. As we saw earlier, we
use app/prim mainly to model AspectJ’s proceed calls from within the body
of an aspect’s advice.

The semantics of app/prim are the same as that of application in the original
ceks machine, save for the question of how to handle the aspect environment.
With regular (variable) environments, we have two choices:

(1) We can use static scoping—we evaluate the body of the procedure using
the environment from its definition site.

(2) We can use dynamic scoping—we evaluate the body of the procedure
using the environment from its application site.

Since we support both static and dynamic aspects, we use some aspects from
both aspect environments. Specifically, we evaluate the body of the function
using static aspects from the site of definition, and dynamic aspect from the
site of application.

The evaluation of primitive application comprises three reduction rules. The
first rule moves evaluation to the function position, Mfun, and keeps track of
the static aspects from the aspect environment at the application site:

〈〈(app/prim Mfun Marg), E, A〉, K, S〉
⇒app/prim 〈〈Mfun, E, A〉, 〈appprim1-k 〈Marg, E, A〉, A,K〉, S〉

The second rule moves evaluation to the argument position, once the function
is fully evaluated:

〈VCfun, 〈appprim1-k MCarg, Aapp, K〉, S〉
⇒app/prim 〈MCarg, 〈appprim2-k VCfun, Aapp, K〉, S〉

The third rule performs the actual application. It moves evaluation to the body
of the lambda expression, extends the environment and store to reflect the
parameter binding, and combines the two aspect environments as described
above:

〈VCarg, 〈appprim2-k 〈(λ (x ) M )t, E, Afun〉, Aapp, K〉, S〉
⇒app/prim 〈〈M, E ′, A′〉, K, S ′〉

where
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〈E ′, S ′〉= 〈E, S〉+ {x 7→ VCarg}
A′ = Aapp|dynamic ∪ Afun|static

To extend an environment and store with a variable and value, we use the
following definition:

〈〈`, e〉, 〈L, s〉〉+ {x 7→ VC}≡ 〈〈`e, e[x 7→ `v]〉, 〈L ∪ {`e}, s[`v 7→ VC ]〉〉
where `e, `v /∈ L ∪ dom(S)

where e[x 7→ `] and s[` 7→ VC ] employ the usual function extension.

These reduction rules for primitive application only differ from the original
ceks machine in one respect: they create the appropriate aspect environment
before evaluating the body of the function.

5.5 Regular function application

Three transition rules dictate the evaluation of function application. The first
two steps are standard, because we do not invoke advice until the function and
its argument are evaluated. The first rule moves evaluation to the function
position, remembering the aspect environment from the application site:

〈〈(Mfun Marg), E, A〉, K, S〉
⇒app 〈〈Mfun, E, A〉, 〈app1-k 〈Marg, E, A〉, E, A,K〉, S〉

The second rule moves evaluation to the argument position:

〈VCfun, 〈app1-k MCarg, Eapp, Aapp, K〉, S〉
⇒app 〈MCarg, 〈app2-k VCfun, Eapp, Aapp, K〉, S〉

We now come to the heart of our semantics: the mechanism for invoking
aspects during function application.

Three things must happen during aspect invocation. First, we must generate
a join point representing the application; second, we must test and apply any
advice transforming the join point; and third, we must allow the transformed
join point to execute.

We first examine join point generation. Recall that we represent a join point
as a list of procedures, beginning with the one about to be applied, VCfun, fol-
lowed by the functions which are still in progress. In order for the continuation
to make the “in-progress” functions available, we apply a special “application
mark” (markapp-k) to the current continuation, which stores the called proce-
dure. Given the existing continuation, K, we construct the new continuation
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K ′ = 〈markapp-k VCfun, K〉. It is important to note that this mark has no
direct effect on the computation; when the function application returns, the
following rule discards the mark:

〈VC , 〈markapp-k VCfun, K〉, S〉 ⇒mark 〈VC , K, S〉

But, with this new continuation, we are now in position to compute the current
join point which each pointcut takes as an argument. We simply traverse the
continuation, cons-ing up the functions from the (pre-existing) continuation
marks into a list:

JJmt-kK = 〈empty, E0, A0〉
JJ〈markapp-k VCfun, K〉K = 〈(cons VCfun, JJKK), E0, A0〉

JJ〈. . . , K〉K = JJKK otherwise

Second, we must check and apply each aspect in the aspect environment,

A = {〈scope, pci, adv i〉 | i = 1, . . . , | A |}.

This entails applying pci to the join point in context (jp∗). If this returns true,
then we applying the corresponding advice adv i (a procedure transformer)
to the function to yield a new function. Otherwise, we return the original
(untransformed) procedure. The transformation, W , with base case of the
original function, fun, is given by:

W J0K = fun

W JiK = (app/prim (λ (f ) (if (app/prim pci jp∗)
(app/prim adv i f )
f ))

W Ji− 1K) for i > 0

Notice the following points about W :

(1) If no advice exists, it simply returns the original function, which will be
applied, using app/prim, to the argument.

(2) It applies each pointcut to the join point.
(3) If no pointcut holds, again it returns the original function.
(4) If some pointcuts hold, then it uses app/prim to apply the final trans-

formed procedure to the original argument. Note that applications in the
body of the transformed procedure may also invoke aspects.

Third, we take the procedure resulting from all applicable advice transforma-
tions and app/prim it to the original argument, yielding a new expression
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for this function application:

M ′ = (app/prim W J| Aapp |K arg)

The third transition rule applies aspects as described above, binding the vari-
ous variables for the function, fun, the argument, arg , join point, jp∗, and all
aspect components (pci and adv i) in the environment and store. Evaluation
moves to the new M ′, carrying the dynamic aspect environment Aapp for use
within M ′, but the static aspect environment remains available as part of the
fun closure.

〈VCarg, 〈app2-k 〈(λ (x ) M )t, Efun, Afun〉, Eapp, Aapp, K〉, S〉
⇒app 〈〈M ′, E ′, Aapp〉, K ′, S ′〉
where

M ′ = (app/prim W J| Aapp |K arg)

K ′ = 〈markapp-k 〈(λ (x ) M )t, Efun, Afun〉, K〉

〈E ′, S ′〉= 〈Eapp, S〉
+ {fun 7→ 〈(λ (x ) M )t, Efun, Afun〉, arg 7→ VCarg, jp∗ 7→ JJK ′K}
+ {pci 7→ VCpci , adv i 7→ VCadvi | 〈scope,VCpci ,VCadvi〉 ∈ Aapp}

5.6 From Semantics to Implementation

We now sketch the correspondence between the semantic specification and our
AspectScheme implementation. To see the connection, we need to examine four
specific constructions that provide our aspect-oriented behavior.

First, we recognize that in each case the weaver is implemented as a procedure
transformer. Weave is equivalent to W , transforming a procedure by testing
pointcuts and applying advice; and differs only in the data representation re-
cursed over. Weave recurs, via foldr , over the list of applicable aspects given
by current-aspects ; whereas W recurs over the size of the set Aapp. This dif-
ference avoids cluttering the semantics with list operations. Our app/weave
macro intercepts procedure applications in Scheme and inserts aspect behav-
ior into the execution via app/weave/rt . The semantics distinguishes primitive
and procedure applications with separate prim and app transition rules, and
app/weave/rt captures this distinction. In the former case, app/weave/rt allows
the primitive procedure to continue without alteration. In the latter case, it
applies the results of weave to the procedure arguments exactly as the app
transitions specify.
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Second, we recognize that our implementation of w-c-m builds new continu-
ation frames that apply the identity procedure. As continuation frames that
simply pass values through, these serve as fresh placeholders to contain the
keyed mark which w-c-m writes. This behavior matches that of markapp-k
continuation frames in our semantics. In particular, our implemented contin-
uation marks keyed by ’joinpoint contain applied procedures, paralleling our
markapp-k continuation frames storing procedure values. Our c-c-m imple-
mentation gathers all continuation marks for a given key; for the ’joinpoint
key, this yields the result of J in the semantics.

Third, we observe that dynamic aspects form a subset of the dynamically-
scoped aspect environment A in the operational semantics, being those ele-
ments with scope = dynamic. W-c-m offers exactly that same dynamic scop-
ing, but allows us to differentiate dynamic from static aspects by key. Hence,
implementing dynamic aspects as continuation marks keyed with ’dynamic-
aspect allows c-c-m to gather all dynamic aspects still on the stack, yielding
(current-dynamic-aspects), which corresponds to Aapp|dynamic in the transition

rule at the bottom of page 35).

Fourth, we note that the operational semantics accumulates static aspects in
the dynamically scoped variable A (with scope = static). The operational se-
mantics specifies that evaluation of λmust close over A at definition time and
apply only the static subset at application time (corresponding to Afun|static
in the transition rule at the bottom of page 35). Inspection shows that our
lambda/static does precisely that: it captures the definition-time static as-
pects into a lexical variable, aspects , and reinstates them at the start of the
procedure body for use by the weaver at application time.

This concludes our discussion of the operational semantics; we present the
entire set of definitions and reduction rules in Appendix A.

6 Related Work

While the earlier work on aspects [24] was defined for languages like Common
Lisp that do offer higher-order programming facilities, the aspects themselves
were defined broadly through generalized weavers. This work did not explic-
itly distinguish between different scoping mechanisms for aspects. While it is
perhaps possible to define these scopes using particular weavers, the work does
not identify this concern or discuss its potential.

AspectJ [23] is the de facto standard for aspect-oriented programming. It
defines a rich set of join points for describing points in the execution of a
program. Since Java is a statically-typed language, AspectJ also requires and
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enforces type declarations when defining aspects. The programmer can also
use types in pointcuts, which is extremely useful in conjunction with wildcards.
AspectJ’s support for software development includes a compiler that produces
standard Java bytecode, and extensions to programming environments that
enable the programmer to browse aspect hierarchies. This paper, however,
describes various shortcomings of AspectJ relative to our language.

Wand, Kiczales, and Dutchyn [37] present a denotational semantics for aspect-
oriented programming. Like us, they study an aspect-oriented extension to
an untyped language; however, they only support first-order procedures. Al-
though we have developed an operational semantics that includes higher-order
functions, many of our ideas derive from their work, such as the use of an aspect
environment and the characterization of advice as procedure transformers.

Walker, Zdancewic, and Ligatti [36] offer an operational account of aspect-
oriented programming, based on translation to a core language enriched with
labels. In many ways, their core language follows our approach: labels act like
continuation marks, advice is captured in an environment, advice is procedure
composition, and pointcuts are predicates over machine state represented by
marks. The key difference is that we allow direct access to the pointcuts and
advice, making them programmable and higher-order; whereas Walker et al. fix
them in a translation from the external application programming language.
The enables us to recognize static scoping of aspects, a feature not supported
in their system. Dantas et al. [8, 9] continue Walker et al.’s approach, extending
it with polymorphic type-checking and local type inference.

Bauer, Ligatti, and Walker [1] present a model for language-based security,
where an outside program monitors the execution of an untrusted program.
Their security policies have the same structure as aspects: they comprise a
set of actions to intercept in a program’s execution, and a policy that can
modify the computation of these actions. Furthermore, the security policies
are first-class values, and they give examples of parametric and higher-order
policies. Their system is similar to aspect-oriented programming, except that
they do not support the same range of pointcuts; notably, they do not provide
a means of examining control flow.

Douence, Motelet, and Südholt [10] provide one of the earliest formal descrip-
tions of aop. They frame aspect-oriented programming as program execution
monitoring, where crosscuts (now called pointcuts) match events in context.
Their work previews our first-class predicate formulation of pointcuts, by pro-
viding combinators for building up pointcuts. But they keep the aspects as
separate execution monitoring code. They rewrite an original program to in-
sert calls to that separate monitoring code, so that the monitoring code can
recognize pointcuts, execute advice, and pass control back. This substantial
difference results in advice that is static and top-level only in their system.
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Orleans [32] defines a predicate dispatching system for Scheme, where the
system dispatches each message according to a branch consisting of a predicate
and a body. These two components are first class values, and thus equivalent to
our pointcut and advice formulation. His system also supports cflow by having
each decision point (join point) maintain a pointer to the previous decision
point. Our system differs from his in two ways. First, we do not require the
programmer to use a special message syntax. Second, Orleans does not address
the issue of scope—in his system, the programmer must define messages at
the top level.

Lämmel and Visser [28] offer a number of functional strategies for traversing
and transforming abstract syntaxes. Their traversal strategies are reminiscent
of our higher-order pointcuts, providing very expressive ways of declaring the
target and context of a transformation. But, their work differs from ours in that
they apply syntactic rewriting to analyze and transform programs whereas our
system operates at evaluation time with full access to values.

7 Conclusion

As aspect-oriented software design grows in popularity, more languages will
need to support this style of development. Recent work on defining a seman-
tics for pointcuts and advice [37] is especially valuable, because it makes clear
the essence of these kinds of aspects, making it easier to port this style of pro-
gramming between languages. Because that semantics is defined for first-order
languages, however, it fails to document how to define AspectJ-like features
for languages with first-class and higher-order procedures. As the family of
languages with these features includes not only academic languages such as
Scheme and ML but also industrially popular languages such as Ruby and
Perl, defining aspects in this context takes on immediacy and importance.

Higher-order languages present both challenges and benefits for aspects. On
the one hand, they force designers to carefully address issues of scope that do
not arise in first-order languages. Not only do procedural entities no longer
necessarily have names, programmers can now distinguish between their loci
of definition and of use. On the other hand, these distinctions of scope make
it possible to define a much richer variety of policies than is possible in a
first-order aspect language. In particular, programmers can now define both
dynamic aspects akin to those of AspectJ and static aspects that can enforce
policies defined within modules, e.g., common security-control paradigms.

In this paper, we present a description of aspects for higher-order languages.
We mimic the operators of AspectJ but implement them in the context of
the Scheme programming language. We also describe the implementation of
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this language. The implementation exploits two novel features of our Scheme
system—continuation marks and language-defining macros—that do not inter-
fere, and indeed integrate well, with traditional tasks such as separate com-
pilation and the use of the DrScheme development environment [17]. This
makes it very convenient for programmers to exploit aspects to improve pro-
gram designs without changing their program development methodology. In
addition, continuation marks impose low run-time overhead, so programmers
are not penalized for their use. Finally, we give a semantic description of
AspectScheme, providing a firm foundation for understanding, verifying and
extending aspects.

There are many directions for future work. While we have explained how
aspects should behave in higher-order languages, we have not provided an ac-
count of pointcuts and advice in languages with even richer (and increasingly
popular) control primitives such as continuations. We have also deliberately
neglected type system questions, particularly the kinds of parametric poly-
morphism that aspects induce, and other forms of static validation. Also, we
might use parametricity to define more general aspects, and develop aspect
combinators by employing higher-order functions. Finally, we have paid rel-
atively little attention to the run-time cost of using aspects and should seek
ways to optimize them (perhaps by shifting some work to compile-time) to
make them minimally intrusive.
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A Semantics

Values V ::= (λ (x ) M )t

| true

| false

| empty

| (cons VC VC )

x :: identifier

t :: source location tag

Expressions M ::= V

| x

| (M M )

| (o M . . .)

| (if M M M )

| (set! x M )

| (around M M M )

| (fluid-around M M M )

| (app/prim M M )

Primitive operations o ::= eq?

| cons

| first

| rest

| empty?

Stores S :: 〈{`}, ` → VC 〉
S0 ≡ 〈{`0}, ` 7→ error〉

` :: store location

`0 = fixed store location

Environments E :: 〈`, x → `〉
E0 ≡ 〈`0, x 7→ error〉

〈〈`, e〉, 〈L, s〉+ {x 7→ VC} ≡ 〈〈`e, e[x 7→ `v]〉, 〈L ∪ {`e}, s[`v 7→ VC ]〉〉
where `e, `v /∈ L ∪ dom(S)

〈E, S〉+ {x1 7→ VC1, . . . , xn 7→ VCn}
≡ 〈E, S〉+ {x1 7→ VC1}+ · · ·+ {xn 7→ VCn}
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Aspect environments A :: {〈scope,VC,VC 〉}
A0 ≡ ∅

scope ∈ {static, dynamic}

Expression closures MC ::= 〈M, E, A〉

Value closures VC ::= 〈V,E, A〉

Continuations K ::= mt-k

| 〈app1-k MC, E, A,K〉
| 〈app2-k VC, E, A,K〉
| 〈if-k MC,MC, K〉
| 〈set-k x, E,A, K〉
| 〈around1-k scope,MC,MC, K〉
| 〈around2-k scope,VC,MC, K〉
| 〈markapp-k VC, K〉
| 〈appprim1-k MC, A,K〉
| 〈appprim2-k VC, A,K〉
| 〈op-k o, 〈VC, . . .〉, 〈MC, . . .〉, K〉

intialization and termination

M ⇒init 〈〈M, E0, A0〉, mt-k, S0〉

〈〈V,E, A〉, mt-k, S〉 ⇒term V

variables

〈〈x, E,A〉, K, S〉 ⇒var 〈S(E(x)), K, S〉

if

〈〈(if M Mthen Melse), E, A〉, K, S〉
⇒if 〈〈M, E, A〉, 〈if-k 〈Mthen, E, A〉, 〈Melse, E, A〉, K〉, S〉

〈〈true, E, A〉, 〈if-k MCthen,MCelse, K〉, S〉 ⇒if 〈MCthen, K, S〉

〈〈false, E, A〉, 〈if-k MCthen,MCelse, K〉, S〉 ⇒if 〈MCelse, K, S〉

continuation marks

〈VC, 〈markapp-k VCfun, K〉, S〉 ⇒mark 〈VC, K, S〉

45



set!

〈〈(set! x M), E, A〉, K, S〉 ⇒set 〈〈M, E, A〉, 〈set-k x, E,A, K〉, S〉

〈VC, 〈set-k x, E,A, K〉, S〉 ⇒set 〈VC, K, S[E(x) 7→ VC ]〉

primitive operations

〈〈(o M1 . . . Mn), E, A〉, K, S〉
⇒prim 〈〈M1, E, A〉, 〈op-k o, 〈〉, 〈〈M2, E, A〉, . . . , 〈Mn, E, A〉〉, K〉, S〉

〈VCm, 〈op-k o, 〈VCm−1, . . . ,VC1〉, 〈MCm+1, . . . ,MCn〉, K〉, S〉
⇒prim 〈MCm+1, 〈op-k o, 〈VCm, . . . ,VC1〉, 〈MCm+2, . . . ,MCn〉, K〉, S〉

〈VCn, 〈op-k o, 〈VCn−1, . . . ,VC1〉, 〈〉, K〉, S〉 ⇒prim 〈δ(o,VC1, . . . ,VCn), K, S〉
where

δ(empty? ,VC ) = 〈true, E0, A0〉 if VC = 〈empty, E, A〉
= 〈false, E0, A0〉 otherwise

δ(cons ,VC1,VC2) = 〈(cons VC1 VC2), E0, A0〉

δ(first , 〈(cons VC1 VC2), E, A〉) =VC1

δ(rest , 〈(cons VC1 VC2), E, A〉) =VC2

δ(eq? , 〈(λ (x) M)t, 〈`, e〉, A〉, 〈(λ (x′) M ′)t′ , 〈`′, e′〉, A′〉)
= 〈true, E0, A0〉 if t = t′ and ` = `′

= 〈false, E0, A0〉 otherwise

around and fluid-around

〈〈(around Mpc Madv M), E, A〉, K, S〉
⇒around 〈〈Mpc, E, A〉, 〈around1-k static, 〈Madv, E, A〉, 〈M, E, A〉, K〉, S〉

〈〈(fluid-around Mpc Madv M), E, A〉, K, S〉
⇒around 〈〈Mpc, E, A〉, 〈around1-k dynamic, 〈Madv, E, A〉, 〈M, E, A〉, K〉, S〉

〈VCpc, 〈around1-k scope,MCadv,MC, K〉, S〉
⇒around 〈MCadv, 〈around2-k scope,VCpc,MC, K〉, S〉

〈VCadv, 〈around2-k scope,VCpc, 〈M, E, A〉, K〉, S〉
⇒around 〈〈M, E, A ∪ {〈scope,VCpc,VCadv〉}〉, K, S〉
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app/prim

〈〈(app/prim Mfun Marg), E, A〉, K, S〉
⇒app/prim 〈〈Mfun, E, A〉, 〈appprim1-k 〈Marg, E, A〉, A,K〉, S〉

〈VCfun, 〈appprim1-k MCarg, Aapp, K〉, S〉
⇒app/prim 〈MCarg, 〈appprim2-k VCfun, Aapp, K〉, S〉

〈VCarg, 〈appprim2-k 〈(λ (x ) M )t, E, Afun〉, Aapp, K〉, S〉
⇒app/prim 〈〈M, E ′, A′〉, K, S ′〉
where
〈E ′, S ′〉= 〈E, S〉+ {x 7→ VCarg}

A′ = Aapp|dynamic ∪ Afun|static

function applications

〈〈(Mfun Marg), E, A〉, K, S〉
⇒app 〈〈Mfun, E, A〉, 〈app1-k 〈Marg, E, A〉, E, A,K〉, S〉

〈VCfun, 〈app1-k MCarg, Eapp, Aapp, K〉, S〉
⇒app 〈MCarg, 〈app2-k VCfun, Eapp, Aapp, K〉, S〉

〈VCarg, 〈app2-k 〈(λ (x ) M )t, Efun, Afun〉, Eapp, Aapp, K〉, S〉
⇒app 〈〈M ′, E ′, Aapp〉, K ′, S ′〉
where

M ′ = (app/prim W J| Aapp |K arg)

K ′ = 〈markapp-k 〈(λ (x ) M )t, Efun, Afun〉, K〉

〈E ′, S ′〉= 〈Eapp, S〉
+ {fun 7→ 〈(λ (x ) M )t, Efun, Afun〉, arg 7→ VCarg, jp∗ 7→ JJK ′K}
+ {pci 7→ VCpci , adv i 7→ VCadvi | 〈scope i,VCpci ,VCadvi〉 ∈ Aapp}

W J0K = fun

W JiK = (app/prim (λ (f ) (if (app/prim pci jp∗)
(app/prim adv i f )
f ))

W Ji− 1K) for i > 0

JJmt-kK = 〈empty, E0, A0〉
JJ〈markapp-k VC, K〉K = 〈(cons VC JJKK), E0, A0〉

JJ〈. . . , K〉K = JJKK otherwise
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B Implementation

;;;
;;; AspectScheme 1.1
;;;

(module aspect-scheme mzscheme
(require (only (lib "list.ss") foldr first rest empty? ))

;; continuation mark interface
(define (c-c-m key)

(continuation-mark-set→list
(current-continuation-marks)
key))

(define-syntax (w-c-m stx)
(syntax-case stx ()

[( tag mark body)
(syntax

((λ (x ) x )
(with-continuation-mark tag mark body)))]))

;; aspect structures
(define-struct aspect (pc adv))

;; current aspects (both static and dynamic)
(define (current-aspects)

(append (current-dynamic-aspects)
(current-static-aspects)))

;; dynamically-scoped aspects
(define-syntax (fluid-around stx)

(syntax-case stx ()
[( pc adv body)
(syntax (w-c-m ’dynamic-aspect (make-aspect pc adv) body))]))

(define-syntax (app/weave stx)
(syntax-case stx ()

[( f a . . . ) (syntax (app/weave/rt f a . . . ))]))
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(define (app/weave/rt fun-val . arg-vals)
(if (primitive? fun-val)

(apply fun-val arg-vals)
(w-c-m ’joinpoint fun-val

(apply (weave fun-val (c-c-m ’joinpoint) (current-aspects))
arg-vals))))

(define (weave fun-val jp∗ aspects)
(foldr (λ (a r)

(if ((aspect-pc a) jp∗)
((aspect-adv a) r)
r))

fun-val
aspects))

(define (current-dynamic-aspects)
(c-c-m ’dynamic-aspect))

;; statically-scoped aspects
(define-syntax (around stx)

(syntax-case stx ()
[( pc adv body)
(syntax

(w-c-m ’static-aspects
(cons (make-aspect pc adv) (current-static-aspects))

body))]))

(define-syntax (lambda/static stx)
(syntax-case stx ()

[( params body . . . )
(syntax
(let ([aspects (current-static-aspects)])

(λ params
(w-c-m ’static-aspects aspects

(begin body . . . )))))]))

(define (current-static-aspects)
(let ([aspects (c-c-m ’static-aspects)])

(if (empty? aspects)
’()
(first aspects))))
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;; pointcuts - fundamental
;; NB: app/prim is not required within this module because
;; the replacement of #%app with app/weave
;; does not occur until after the module is installed.
(define ((call f ) jp∗)

(eq? f (first jp∗)))

(define ((top) jp∗)
(empty? jp∗))

(define ((below pc) jp∗)
(and (not (empty? (rest jp∗)))

(pc (rest jp∗))))

;; pointcuts - strict combinators, variadic
(define ((&& . pcs) jp∗)

(andmap (λ (pc) (pc jp∗)) pcs))

(define ((|| . pcs) jp∗)
(ormap (λ (pc) (pc jp∗)) pcs))

(define ((! pc) jp∗)
(not (pc jp∗)))

;; pointcuts - higher-order points-free
(define (within f )

(below (call f )))

(define (cflow pc)
(&& (! top)

(|| pc (below (cflow pc)))))

(define (cflowbelow pc)
(&& (! top)

(below (cflow pc))))

(provide (all-from-except mzscheme #%app lambda)
(rename app/weave #%app)
(rename #%app app/prim)
fluid-around
(rename lambda/static lambda)
around
call top below && || ! within cflow cflowbelow))
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