

Applying a Multi-level Security Mechanism to a Network

Address Translation Scheduler

 Arthur McDonald1 and Haklin Kimm1 Haesun Lee2 and Ilhyun Lee2

 1Computer Science Department 2Department of Science and Mathematics
 East Stroudsburg University of Pennsylvania University of Texas of the Permian Basin
 East Stroudsburg PA 18301 4901 E. University Blvd. Odessa, TX 79762
 E-mail: haklkimm@esu.edu E-mail: lee_h@utpb.edu

Abstract - In this paper, we consider a scheduling
algorithm being applied with multi-level security that
allows two or more hierarchical classification levels of
information to be processed simultaneously. There are
various load scheduling algorithms pre-built into the Linux
Virtual Server system that have been tested and proven
effective for distributing the load among the real servers.
While these algorithms may work effectively, there is no
current scheduling algorithm that considers a multi-level
security protocol to determine which clients have access
rights among the servers.

1. Introduction
In the late 1990s, several open source developers

created a software package for Linux to take
advantage of scalability and cluster computing. The
Linux Virtual Server (LVS) project allows many
machines to be networked together into a highly
available, high performance virtual server. While it
seemingly appears to be a single server to machines
outside of the cluster (referred to as clients), the
machine may consist of hundreds of separate servers,
handling requests for HTTP, FTP, DNS, TELNET or
others. When a client connects to the cluster of
servers, the connection is processed by the director,
or master node of the virtual server. The director
sends these connections, referred to as the load, to
one of the many servers in the cluster based on some
scheduling algorithm.

As of now, there are several load scheduling
algorithms already developed and implemented in
LVS, including round-robin, least-connection,
destination hashing and source hashing. While these
scheduling algorithms work well in various situations,
there is no way for the administrator to specify, based
on some protocol, what security level clients can
have to access certain servers in the cluster.

We present the implementation of a multi-level
security load scheduling algorithm for Linux Virtual
Servers. A multilevel secure (MLS) system is defined
as a system with a mode of operation that allows two
or more hierarchical classification levels of
information to be processed simultaneously
[1,3,10,11,15] .

Security administrators can specify which users
are authorized to access data and programs depending

on their security levels. Using the algorithm that we
present in this paper, information can be kept at
several levels of security on separate server machines,
which will only grant access to the data if the security
level of the client machine is identifiable and has
been given the proper security clearance. The
security levels are statically assigned by the security
administrator of the LVS and as of this writing there
is no way to bypass the scheduler.

2. Linux Virtual Servers

One of the main concepts in a Linux Virtual
Server is the ability for the director to forward data
packets sent by the client to the appropriate real
server and vice-versa. There are three ways for the
director to perform this task: Network Address
Translation (NAT), IP-Tunneling and Direct Routing.

2.1 Network Address Translation (NAT)

Network Address Translation (NAT) is a way of
manipulating the source and/or the destination
address of a data packet. As described in [2, 12],
data packets contain both address information, such
as the IP address of the source and destination, as
well as data. NAT works on the theory that the
addressing information is independent from the data.
Therefore, a machine stationed somewhere along the
route between the source machine and the intended
destination could change the addressing information
(or any other information in the packet header)
without affecting the connection [4, 12].

Traditionally, a machine acting as a Network
Address Translator is used to connect an isolated
range of private IP addresses, such as a Virtual
Private Network (VPN), to an external realm of
globally unique IP addresses, such as the Internet.
When a private network’s internal IP addresses
cannot be used outside of the network because they
are invalid or for security reasons the addresses must
be kept within the private network, Network Address
Translation is used [7].

2.2 IP Tunneling

IP Tunneling, sometimes referred to as IP
encapsulation, is a technique to encapsulate an IP

mailto:haklkimm@esu.edu
mailto:haklkimm@esu.edu

packet within IP packets. When a client requests a
service from the LVS, a packet destined for the
virtual IP address is examined by the director, which
chooses the real server using the scheduling
algorithm. The director then encapsulates the packet
within the data section of another IP packet and
forwards it to the destined real server [17]. When the
encapsulated packet reaches the real server, it
decapsulates the packet and processes the request.
However, data sent back to the client from the real
server is not routed back through the director; the real
server has the IP address of the client, which was in
the header of the encapsulated packet. The real server
sends all results directly to the client address.

2.3 Direct Routing

In a Linux Virtual Server that uses Direct
Routing as the forwarding method, all machines are
configured to accept data to the Virtual IP address of
the LVS [8, 16]. When a client requests a service,
the director examines the packet and determines if it
matches a service offered by the LVS. If there is a
match, then a real server is chosen using the
scheduling algorithm and the data packet is directly
forwarded, without any modification, to the physical
MAC address of the real server [9]. When the real
server receives the forwarded packet, the request is
processed by the real server and returned directly to
the client, bypassing the director [9].

3. Load Scheduling

One of the most important concepts in a Linux
Virtual Server is the concept of load scheduling. As
of this writing, the following six scheduling
algorithms are implemented in the core LVS
distribution [18].

3.1 Round Robin

The round robin algorithm sends incoming
requests to the next server in the server list. This
algorithm treats all the real servers equally,
regardless of the number of incoming connections or
response time of the server.

3.2 Weighted Round Robin

This algorithm is similar to the normal round-
robin method, except each real server is also assigned
a weight. More jobs are given to real servers with a
greater weight. The weight factor is adjusted as the
load for the server changes. This scheduling
algorithm is beneficial when there is a significant
difference in the load capacity of the real servers.

3.3 Least Connection
This algorithm distributes requests to the real server
with the fewest number of established connections.

This algorithm is considered a dynamic scheduling
algorithm because it needs to count the live
connections for each server dynamically.

3.4 Weighted Least Connection

The weighted least connection scheduling
algorithm is a superset of the least connection
algorithm, in which weights can also be assigned to
real servers. Real servers with a higher weight will
receive a larger percentage of the connections.

3.5 Destination/source Hash Scheduling

The destination hash scheduling algorithm uses a
static hash table to look up the destination IP address
of data packets and assign a real server accordingly.
Source hash scheduling is similar to the destination
hash algorithm, except that the real server is chosen
based on the source IP address of the data packet.
Unfortunately, there is not much documentation on
the destination or the source hash scheduling
algorithms as these are still considered experimental.

4. Scheduling with Multilevel Security

While various load scheduling algorithms may
work effectively, there is no current scheduling
algorithm that considers a multi-level security
protocol to determine which clients have access
rights among the servers.

4.1 The Kernel

The kernel actually does very little itself, but
provides the tools for which services can be built. In
fact, any program running on the computer is forced
to interact with the kernel in order to access hardware
devices, protecting them from damage [5].

Interaction between applications and the kernel
is provided through system calls. User applications
and system programs are said to exist and execute in
user space. All kernel operations are executed in
kernel space.

4.2 Functions

Our algorithm uses a variety of functions to
schedule incoming requests across the Linux Virtual
Server. Some of these functions are required for
compatibility with the already existing LVS code and
have only been slightly modified for this project. This
section details those functions that have been used for
the project.

4.2.1 ip_vs_mls_init_svc

This function is used by the LVS code when
setting up the virtual server to use the multi-level
security scheduling. When an administrator sets up
the Virtual Server, they must specify what type of
service (telnet, http, etc…) to set up, along with what
scheduling algorithm to use. This function takes a

parameter as a pointer to an ip_vs_service data type,
and initializes its scheduling data to the list of
destination real servers.

4.2.2 ip_vs_mls_done_svc

This function is called by the LVS code when
the service is no longer offered by the Virtual Server.
This function simply returns 0 to let the system know
that the service is no longer being used.

4.2.3 ip_vs_mls_update_svc

This function is called by the LVS code when
the Virtual Server is updated. For example, if a new
real server is added to the cluster, then the service of
scheduling data needs to be updated to the new list of
destinations. This function is identical to
ip_vs_mls_init_svc. It takes the ip_vs_service pointer
as a parameter and updates the scheduling data,
returning 0 to the system.

4.2.4 __init ip_vs_mls_init

This function first initializes the scheduler by
calling INIT_LIST_HEAD. It then registers the
scheduler with register_ip_vs_scheduler. This
function does several things. First, it checks to make
sure the scheduler is not already registered in the
LVS system. If it is not, then the scheduler is added
to a linked list of schedulers available to the Virtual
Server and the module use count is incremented by 1.
This list holds all the information that the LVS
system needs to be able to use the scheduler for load
distribution.

4.2.5 __exit ip_vs_mls_cleanup

This function is called by the module_exit
function when the module is no longer used by the
kernel. Its only job is to unregister the scheduler
from the scheduler list by calling
unregister_ip_vs_scheduler that deletes the scheduler
from the linked list and decreases the module use
count.

4.2.6 ip_vs_mls_schedule

This function is the scheduler itself. When a
new connection is established between a client and
the director, the LVS system calls this function to
determine what real server to send the request to.
Unlike the previous functions described, which were
basic modifications to the initialization and exit
function of previous scheduling modules, this
function has been totally written from scratch in
order to create a multi-level security scheduling
algorithm.

This function does several things. First, it
establishes the security level of the client by calling
ip_vs_mls_get_security_level. Then, it loops through

the list of destination real servers and assigns the
destination according to the security level. Finally, it
returns a pointer to the destination real server’s IP
address to the LVS code, which handles all
communication from there.

4.2.7 ip_vs_mls_get_security_level

This is the function that determines the security
level of the client trying to access the Linux Virtual
Server. The ip_vs_mls_get_security_level has one
basic job, but that job is the most important in this
algorithm. While the primary purpose of this
function is to clearly determine the security level, it
must perform several tasks to accomplish this
seemingly trivial job.

First, the ip_vs_mls_get_security_level function
is passed to it as a parameter the source address of the
client machine, stored as a 4 byte unsigned integer
(__u32) and named source_address. It then opens a
pair of data files stored in the root directory of the
director, levela.dat and levelb.dat. These files
contain the IP addresses for the two security levels
that have access to this Virtual Server. The function
must then read each of these IP addresses from the
data file, convert the 15 byte string data to __u32
unsigned integer and then compare it with the client’s
source_address.

If there is a match, then the function returns the
security level based on what file the IP address was
found in, return a 1 if the value was in levela.dat, and
return a 2 if it was in levelb.dat. Finally, if both files
are parsed and the IP address was not matched, then
return a 0 to let ip_vs_mls_schedule() know that the
user should not have any access to the Virtual Server.

5. Implementation

This section describes the lab setup that was used
for our Linux Virtual Server, including hardware and
software configuration, the steps taken to set up our
system, and how the system, including our newly
written algorithm was tested and debugged.

5.1 Installing Linux Virtual Server

This section details the steps taken to set up our
network lab to act as a Linux Virtual Server. Up to
now, the 4 machines were running various operating
systems networked together through an Ethernet hub.
When the steps in the following sections were
completed, this network would be a fully functional
Linux Virtual Server and Client, running on a private
network within the East Stroudsburg University
computer laboratory.

5.1.1 Patching the Director Kernel

The very first step in installing the LVS, was to
decide on which kernel to use. After extensive

research on the Linux Virtual Server Mailing List, it
was decided to use the 2.4.x stable build of the kernel.
More specifically, version 2.4.18 was the kernel
version used in the ESU-LVS. We created a
directory on our director machine name
/apps/download and downloaded the fresh kernel
there. Next, the compressed kernel source code was
unpacked by running the following command1:

[root@director /apps]# gunzip –c
/apps/download/linux-2.4.18.tar.gz | xvf –
This command decompressed the kernel code into the
directory /apps/linux-2.4.18. This was now the
location of the Linux kernel source code.

The next step was to patch the kernel with the
Virtual Server code. The kernel was then patched
with this new code by executing the following
command:

[root@director linux]# patch –p1
</apps/download/linux-2.4.18-ipvs-1.0.4.patch.gz

This command installed the LVS code into the
/linux/net/ipv4/ipvs directory of the new kernel.

The final steps to patch the kernel involved
installing our new scheduling algorithm code. This
required several steps. With these changes made, the
newly patched 2.4.18 kernel was ready to be
configured with xconfig.

5.1.2 Kernel Configuration on Director

Configuring the kernel to include the Linux
Virtual Server code when compiled was done by
running make xconfig within the /apps/linux-
2.4.18/linux/ directory. Xconfig is an X Windows
Graphical User Interface (GUI) front-end for
configuration of the kernel options.

For each option in the Xconfig configuration,
there are three choices: Y, N or M. Selecting one of
these choices either compiles the option into the
kernel code (Y), does not compile the option (N), or
compiles the option as a module that can be loaded
into the kernel later (M). Besides the default options
in the configuration file, there were several
modifications that we needed to make in order for the
Linux Virtual Server code to properly run.
Secondly, the IP: Netfilter Configuration was
configured with the following options:

• The final section that needed to be configured
was the Linux Virtual Server options:

• The last option was also set. Under Code
maturity level options on the main menu, the
Prompt for development and/or incomplete
code/drivers option was set to Yes.
With all of the configuration settings set, the new

configuration was saved and the Xconfig application

was exited. Next, the command make dep was
executed. The "make" program is designed to rebuild
only those components that need to be rebuilt, based
on some notion of what things have changed (since
the previous build) and a set of rules expressing
"dependencies".

1 Note: [root@director /apps]# is the command prompt on our
Linux machine, the command begins with gunzip.

5.1.3 Building Modules and Compiling the Kernel

Once the dependencies were made, the kernel
modules were compiled by running make modules.
This command compiled all of the components
selected in the configuration as modules. Next,
make modules_install was run to copy the modules
to the appropriate directory where they can be used
by the kernel when needed.
With the modules compiled and installed, the final
step was to run the command make bzImage. This
command compiled all of the kernel code into a
compressed kernel image saved in the
/linux/arch/i386/boot directory of the new kernel.
The final step was to edit the /etc/lilo.conf file.

5.1.4 Testing the New Kernel

With the new kernel compiled and the boot entry
loaded using lilo, the system was rebooted to the new
kernel. Testing the kernel simply required monitoring
the boot process of the system and insuring that no
errors occurred. The system booted normally, and all
functionality of the operating system and its
applications was intact. We concluded that the new
kernel was currently stable and the compilation of the
source code was a success.

5.2 Installing IPVSADM

With the newly patched and compiled kernel
running the Linux Virtual Server code, the next step
was to install the IPVSADM program. IPVSADM is
the user application interface to the LVS. IPVSADM
is used to run all the administering of the Virtual
Server. This includes setting up real servers that the
director controls, setting up services that run on the
real servers, giving weights to real servers and setting
the scheduling algorithm for the LVS.

To install IPVSADM to administer our Virtual
Server, we downloaded the appropriate version of the
program that matched our kernel version from
http://www.linuxvirtualserver.org/software/. The file
version we used is named ipvs-1.21.tar.gz. We
created a temporary directory on the director machine
called /apps/lvs and saved the compressed
IPVSADM program to this directory. Next, we
unzipped the file by running the following command:

[root@director/lvs]# gunzip –c
/apps/lvs/ipvsadm-1.21.tar.gz | tar xvf –

This command unzipped the files to the
/apps/lvs/ipvsadm-1.21 directory. After navigating

http://www.linuxvirtualserver.org/software/

to this directory, we compiled and installed
IPVSADM by running make install. The makefile
that comes with the IPVSADM code takes care of all
the necessary compiling of the code, and installs it
for use on the director. To test that the program was
properly installed, the ipvsadm command was run.

5.3 Setting up LVS for Services (Using
IPVSADM)

There are several ways to set up a Linux Virtual
Server for Network Address Translation. Looking on
the Internet, various setup scripts were found that
have been developed by other researchers in the LVS
community. While some of these scripts may have
worked for this project, it was decided that this
project was more specialized and that the LVS should
be set up from scratch, rather than relying on a pre-
existing setup script. Reading through the Linux
Virtual Server mini-HOWTO [14] some basic
instructions on setting up the LVS by hand were
found.

Although the LVS code had been compiled and
was running properly on the director, there were still
several adjustments that would need to be made on
the director and the real servers in order for
communications between the machines would
operate correctly.

5.3.1 Setup for the Director

For the director, we developed a script that did
the following:

• Turn on IP forwarding
• Turn off ICMP redirects
• Create a Virtual IP address
• Set the default gateway
• Clear the IPVSADM tables

IP Forwarding is turned off because all
forwarding of packets from the client to the real
servers is done in the LVS code.

An ICMP redirect is an error message sent by a
router to the sender of a data packet. If the router
believes it received the packet in error, i.e., there
exists a better route that the packet could be sent
from the sender to the destination, it will notify the
sender that it should send subsequent packets through
a different gateway [6].

Just by this definition of the ICMP redirect it is
seen why it would be necessary to turn these redirects
off in the Virtual Server. The client machine does
not know that the packets it sends to the director’s
virtual IP are being forward to one of the various real
servers. It would therefore not make any sense if the
director sent an ICMP redirect error message to the
client, because the client machine believes that the
director is the destination of the data packet, where in
reality, one of the real servers is the destination. We

turn off ICMP redirects to ensure that the director
simply forwards the incoming packets, rather than try
to inform the client of a better route to take.

The Virtual IP Address is one of the fundamental
aspects of a Linux Virtual Server. This is the IP
address that the outside client(s) connects to. For our
Virtual Server, we set the Virtual IP address to
192.168.0.100.

The default gateway, in a network using subnets
like our LVS, is the router that forwards network
traffic to a destination outside the LVS. For the
director, we set the default gateway to 192.168.0.255.
This is just a generic IP address that is on the network
that the client and the Virtual IP address are on
(X.X.0.X).

Finally, we cleared the IPVSADM tables to
prepare them to be filled with our settings for the
LVS. This step is technically not really necessary,
since there has not been anything set in the
IPVSADM tables yet, but it is a good general
practice to clear the tables when setting up a Virtual
Server from scratch.

5.3.2 Setup for the Real servers

For each of the real servers, a script was run that
performed the following tasks:

• Set the default gateway
• Check if the default gateway was reachable
• Check for Virtual IP of director
• Set IP forwarding to Off

The default gateway was set to the real IP address of
the director. This forces all outgoing traffic from the
real servers to be sent through the director, which is
what is intended in the Network Address Translation
setup of the LVS.

The check to see if the default gateway is
reachable and the check for the Virtual IP are simply
issuing PING commands to the respective IP address
to make sure a response is received.

Finally, IP forwarding was set to Off in the real
servers also, because packets will not be forwarded
from real servers. These machines process the data
and return it to the director, which forwards the data
back to the client.

5.3.3 Using IPVSADM

With the director and real servers set up for
Network Address Translation, we then used
IPVSADM to set up the Virtual Server. The first step
was to set up the type of service that our LVS would
offer, along with the scheduling algorithm that should
be used. For this thesis, we used the hypertext
transfer protocol (http) service with our newly
created multi-level security scheduling algorithm
(mls). To set up this service we executed the
following IPVSADM command:

[root@director /]# ipvsadm –A –t 192.168.0.100:http –s mls

This command sets up the http service using multi-
level security scheduling on the Virtual IP address of
the director (192.168.0.100). The –A option tells
IPVSADM to add the following service, in our case
http. The option –t tells the program that it is a TCP
service and –s is the option for the scheduler, mls.

Next, the real servers were set up using
IPVSADM by executing the following commands:

[root@director/]# ipvsadm –a –t 192.168.0.100:http –r
192.168.1.1:http –m –w 1

[root@director/]# ipvsadm –a –t 192.168.0.100:http –r
192.168.1.2:http –m –w 1

The –a option tells the program that a new real server
is being added to the server list, that will use TCP
service (-t option). The –r option is followed by the
IP addresses of the real server being added. The
option –m is needed for Network address translation.
This option tells IPVSADM to use masquerading.
The final option, -w, sets the weight for the real
server. For this LVS, both real servers were assigned
a weight of 1.

6. Conclusion

The code for the multi-level security LVS has
been added into the kernel of the director, and the
ability to grow the cluster of real servers is therefore
very difficult. In a real-world application of a multi-
level security LVS the ability for more than two real
servers would most likely be needed.

Unfortunately, constraints on the equipment
available for this project left us to develop our LVS
with two real servers, which is not necessarily a
negative. One purpose of this project was to show
that multi-level security within a Linux Virtual
Server is a valuable research area. In today’s global
political climate, there has been a push for more
research in the area of multi-level security. We feel
that, although limited, this project has been a
valuable step in the development of a full-blown
multi-level security system.

One future goal of this project would be to
develop an administration tool to allow easier
manipulation of the data files. Perhaps the X
windows based GUI application that would allow the
user to quickly add or remove a machine or group of
machines to a proper security level.

With the current high demand for the need of
secure data, multiple user systems must be able to
support multi-level security. To keep data safe, it
must be insured that unauthorized users do not access
that which they have not be given permission to
access. Looking back on the research, development
and results of this project, we feel that it has been a
good first step into the area of multi-level security in
a Linux Virtual Server environment. While there is

obviously much more work to be done in this field,
the future of the Linux Virtual Server Project, and
multi-level security across LVS and cluster
computing in general, looks very optimistic, as well
as challenging.

References
[1] Campbell, J., Ehrsam, T., Tinto, M., Williams, J. “The

Future of Multi-Level Secure (MLS) Information
Systems,”http://csrc.nist.gov/nissc/1998/proceedings/p
anelF3.pdf .

[2] Comer, D.E. Computer Networks and Internets:
Second Edition. 1999. Prentice Hall, Inc. Upper
Saddle River, NJ.

[3] Department of Defense. “Multilevel Security in the
Department of Defense: The Basics.” March 1995,
http://nsi.org/Library/Compsec/sec0.html .

 [4] Egevang, K. & Francis, P. The IP Network Address
Translator. RFC 1631. May 1994.

[5] Galvin, Peter & Silberschatz, A., Operating system
concepts, 5th edition, John Wiley and Sons Inc., 605
Third Avenue, New York, 1999.

[6] Gill, Stephen. “ICMP redirects are ba’ad, mkay?” 2002,
http://www.qorbit.net/documents/icmp-redirects-are-
bad.pdf .

[7] Halai, Murtaza and Allahwala, F.K. “End to End
Address Transparency,” Cornell University.

[8] Hong, Jonghyuck & Kim, D. “Hierarchical Cluster for
Scalable Web Servers.” Korea University, Seoul,
Korea.

[9] Horman, S. “Linux Virtual Server Tutorial.” July 2003.
[10] Kang, M. H., Froscher, J. N., and Eppinger, B.J.

“Towards an Infrastructure for MLS Distributed
Computing,” Naval Research Laboratory, Information
Technology Division. Washington, D.C.
http://www.acsac.org/1998/presentations/wed-a-330-
kang.pdf .

[11] Kimm, H., Chester, R., Griffiths, J., & Kertis, K.
“Information Retrieval Tool in Heterogeneous
Multilevel Secure Environment,” Technical Repor,
Oak Ridge National Laboratory. July 1993.

[12] Kohler, E., Morris, R., Poletto, M. “Modular
Components for Network Address Translation.”

[13] Korzeniowski, Paul. “Managing Server Traffic
Loads,” SW Expert, November 2001.

[14] Mack, Joseph. “LVS-HOWTO.” 2004.
[15] Rowton, R. “Security Architecture and Models.”

February 2004.
[16] Rubini, Alessandro. “Kernel System Calls.”
 http://www.linux.it/kerneldocs/ksys/ksys.html
[17] Zhang, W., Jin, S., Wu, Q. “Creating Linux Virtual

Servers,” National Laboratory for Parallel &
Distributed Processing. Changsha, Hunan 410073,
China.

[18] Zhang, Wensong. “Job Scheduling Algorithms in
Linux Virtual Server.”

 http://www.linuxvirtualserver.org/docs/scheduling.ht
ml.

http://csrc.nist.gov/nissc/1998/proceedings/panelF3.pdf
http://csrc.nist.gov/nissc/1998/proceedings/panelF3.pdf
http://nsi.org/Library/Compsec/sec0.html
http://www.qorbit.net/documents/icmp-redirects-are-bad.pdf
http://www.qorbit.net/documents/icmp-redirects-are-bad.pdf
http://www.acsac.org/1998/presentations/wed-a-330-kang.pdf
http://www.acsac.org/1998/presentations/wed-a-330-kang.pdf
http://www.linux.it/kerneldocs/ksys/ksys.html
http://www.linuxvirtualserver.org/docs/scheduling.html
http://www.linuxvirtualserver.org/docs/scheduling.html

